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Abstract Soft-sensing or inferential estimation has 
long been considered a potent tool to deiil with the 
conflict between small control interval itntl large 
sampling interval existing in a wide variety of 
industrial processes. To extend the soft-sensing from 
linear system to nonlinear case, we propose it 

nonlinear soft-sensor on the basis of multi-step 
predication using recurrent neural network and a 
novel alternating training method especially suitable 
for slowly sampled primary output. The nonlinear 
soft-sensor has been demonstrated by simulation 
results to be able to produce (1uillit”led estitnittioti 
with good convergence speed. 

I .  INTRODUCTION 

In many process control systems there exist a 
formidable difficulty concerning the large sampling 
rate of the controlled output. i e. .the primary output, 
due to measurement device limitations. Often, these 
primary outputs are employed as feedback signals for 
process control or for other control actions. Their use, 
however, can cause major and prolonged deviations 
from set points since disturbance effects remain 
undetected in between the long sample periods. And 
these effects cannot be sufficiently overcome by esisting 
advanced controller algorithms and can lead to 
unsatisfactory, or even unacceptable control system 
performance. Typical cases occw in product control of 
&stillation columns, biomass concentration control of 
fermentation process and Kappa number control of pulp 
digesters. 

A traditional way to combat this diniculty is to 
incorporate secondary outputs, i e. .the easily measured 
variables which are related to the primary output in a 
certain way into control system. The application studies 
and publications in this field may date back to 1070’s 
when Brosilow and coworkers first proposed a 
controller design method termed inferential control [ 11. 
Since then, a large amount of effort and time has been 

and coworkers presented adaptive inferential control 
algorithm in [ 2]and [ 3lconcerning standard state-space- 
based estimator and input-output-based estimator. 
M.T.Thani and coworkers discussed multirate and 
multivariable self-tuning control and its application in 
distillation column study in [J]. T.Mejdell and 

devoted to this field, among them. M.T. G ~ i l * i  ‘ 11 d oust 

S.Skogestad summarized several output estimation 
method in [SI. All this work has been done with the 
postulate that the controlled plant is linear or at least 
fiinctioning adjacently at the working point which 
make it possible to be linearized reasonably For most 
real processes, however, especially those chemical 
industrial processes such as biomass reactor or pulp 
digester . there esist strong nonlineraity among 
manipulate inputs, primary outputs, secondary outputs 
and other relating variables. therefore. the presented 
method may not achieve good performance, due to their 
inability to deal with nonlinearity. It was this dilemma 
that stimulate the research work of nonlinear inferential 
control. 

Inferential control is largely based on the output 
inferential estimation obtained by finding the relation 
between prinrary output and secondary output, hence 
‘inferential’. Clearly. here you see the output estimator 
has taken the place of measurement device such as 
chroniatographg which is prohibitively expensive. That 
is using output estimator as sensor rather than the other 
commonly reckoned apparatus, hence, soft-sensing. 

As for nonlinear system. how to get the output 
estimation remains a inan obstacle. fewer work has 
been done comparing with the linear case. A typical 
method to obtain nonlinear output estimation is to 
employ Extended Kalman Filter using detailed 
nonlinear dyiiamic model of the plant[6] whose 
performance may vary with the extent of inatch 
bctween model and plant Other work employ 
Artificial Neural Network as a usefiil tool to deal with 
the model-based estimator’s poor robustness, for more 
detail. reader may refer to [7. 8, 91. But there is still no 
guarantee of perfect convergence speed, avoidance of 
local mininia and most of all, the best use of 
information available. 

In this paper . we propose a nonlinear soft-sensor 
based on multi-step predication of the output using 
recurrent neural network with main effort to combat the 
difficulties mentioncd above. 

11. MUTISTEP PREDICTIVE SOFT-SENSOR 

The soft-sensing problem can be stated as follows 
(for simplicity. we will employ SISO system to 
demonstrate, and all the description can be easily 
estended to MIMO case). In a control process. the 
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primary output y is generated by the controlled plant at 
every sample interval T. but mainly due to the 
limitation of measurement device. the sampling value 
of ycan only be obtained at interval NT. There arc 
other variables which can be sampled at intenal T and 
have niore or less relation to v. these are secondary 

outputs V, (i = 1.2.. ..,,U). Our objective here IS to we 
easily measured vI and n~anipulated input zi to 
estimate unmeasured v , as shotvn below. 

yunineasured - .f ( " ' v m " m h l e )  (2.1) - 

wit11 (V*,,,,& 1 = t v, . y 3 * . * , vp } . 

V . R' 

I yl 

! 
' i  
I /  
1 j  

Fig. 2.1 Insert estimated primary output 

We may view the idea in another way as shown in 
Fig 2.1, i.e., with the fixed primary outpul ,vJNr 
obtained every other NT. our \+ark is to insert or 
predict estimated primary outputsijbetween 

correctly enough to approsimate the real output 
Y J ~ ~  
generated by plant. and for a single slow sampling 

internal NT, the work is to predict i j  at instant of 

jNT  + T ,  jNT  + 2 T ,  ... ,dNT +( ,V - 1)T. 

equation: 
Suppose that the plant can be described b\ the 

(2.2) 
y ( k + l )  =f(v(k).v(k - 1 ) ; . * , y ( k - i 1 +  I) ,  

u(k) ,u(k  - 1 ) ; s .  .u(k  - / f ? +  1)) 
with/'(.) as a nonlinear fitndion. This function 
f(.)can be taken as a one-step predictor. since we get 
y ( k  +I)  using the present and past values ofv and U 

Could we get multi-step predictor the same way? 
Here we will utilize generalized prediction as our 

tool to accomplish the task. In [lo].  Clarke proposed 
GPC method first to predict the outputs within 
prediction horizon then nianipulatc control input to let 
them follow the reference trajectory. We incorporate 
the first part into our work 

For a nonlinear system,a similar multi-step 
predictor is obtained by the follo~ving deduction: 

... ... 

Finally we get : 
J'"n = F ( J L . ( / k . A [ i . v k )  

& = ( y ( k  +I):-- .y(k  + N))" y N  

Yk = ( , V ( k ) : * * . ) , ( k  - ? I  + l)',% 

Ilk = ( t / ( k -  1);*-,~4(k - w +  l))',,t-l 
A1INk = ( A u ( ~ ) ; . . . A u ( ~ + N  -1))" 
F = (4 ( *  * * : * * . * *  * ). . . . . FN ( - e -  . * * * . * * ) 
and F ( . )  is the N-step predicator to be built. 

To realilze such a complicated function as F( . )  , 
using ANN scenis to be desirable. However, according 
to (2.3 ). we must s i ipply i .v(k) , . . . , .~ (k-n+l) )as  part 
of the inputs to ANN to obtain y ( k  + j ) ,  and among 
them. {.v(k - l ) , . . . .y(k-n+~))are  last time outputs 
from ANN, i.e. , they sliould be marked as 
{p(k -1)......v(k -n+l)\ ,and therefore (2.3) has to be 
changed into 

- 

y(k +,/) = F(.v(k).v(k - l),*-.,,V(k -n+ 1); 

,j = 1.2:*.,1v (2.4) 
u(k - 1) :... u ( k  - 111 + l):Au(k);., ,  Au(k + j - 1)) 

It has been denionstrated by Narandra and co- 
worker [ l l ]  that D parallel identification model like 
(2.4) is not preferable to generate stable laws. since 
even if the plant is bounded-input bounded-output 
stable. there is no guarantee that the parameters will 
converge or that the output error will tend to zero. And 
in  spite of two decades of work. conditions under which 
the parallel model parameters will converge even in 
linear case are at present unknown. 

where 
To overcome this difficulty, we resort to (2. l), 

- 
. v ~ ~ , t t l l ~ , ~ n i ~  d -. .f ( 3 { v ~ ~ ~ ~ a ~ ~ r a b / ~  } ' 
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For simplicity, assume there is only one secondary 
output, and we suppose 
y ( k )  = f ( u ( k  - 1) ...., u ( k  - 17z):v(k - 1) ,... ,v(k -a ) )  

(2.5) 
Substitute {y(k - 1). . . , v ( k  - n + 1)) by (2.4) will 
obtain the changed form of (2.4) 

y ( k  + j )  = G, ( y ( k ) ; v ( k  - 2), . . , v ( k  - q - I ?  + I): 

u(k  - 2 ) , . . . , u ( k - m - - 1 7 + l ) ; A ~ ( k ) , . . . A 1 1 ( X .  +,j -1)) 
j = 1,2:... N 
(2.6) 

Remark 1: As has been shown in (2.6), for every NT, 
we will get y ( k + j ) ( ~  = 1, ..., N-I)  between two 
slowly sampled output values just as shown in Fig. 2.1 , 
and with Gj well chosen, 7, will approximate 

y,adequately. 
Remark 2: { ~ u ( k ) . .  . . . A U ( ~  + .j - 1)}( 1.2,. . . N) has 
been used as part of tlie network inputs. which makes 
difference from GPC whose fiiture manipulated input 
is unknown and could only be obtained through 
minimizing the cost function.& for inferential 
estimation, the interval between two sampled instants is 
not actually 'fii ture', hence 
{ A u ( k ) ; . - , A u ( k +  j-l))(1,2....,.V) is known and 
what we are supposed to do is just to estimate the 
already generated output. Furthermore, the use of 
{ Au( k ) , . . .  ~ Au(k  + j - I))( 1.2,. . . , N) demonstrates tlie 
proposed algorithm's abilih to have a better use of 
available infonnation. 
Remark 3:  The direct obtaining of relationship (:;, is 
considered time and computation consuming and if 
possible, finally result in very complicated form. Here. 
we try to employ Artificial Neural Network as a 
powetful tool to realize c;, . 

In. RECURRENT NEURAL NETWORK IN SOFT- 
SENSING 

Our work requires a system that will store and 
update context information, i.e., information computed 
from the past inputs and useful to produce desired 
outputs, Recurrent neural networks are well suited for 
this task because they have an internal state that can 
represent context information. The cycles in the graph 
of a recurrent network allow it to keep information 
about past inputs for an amount of time that is not fixed 
a priori, but rather depends on its weights and on tlie 
input data. In contrast , static networks ( i.e.. with no 
recurrent connection), even if they include delays ( such 
as time delay neural networks 1121 ), have a finite 

impulse response and can't store a bit of information for 
an indefinite time. 

3.1 Inner Recurrei~t Network and Its Trnining Method 

Tlie topology of a typical Inner recurrent Network 
is shown in Fig 3.1. It has three layers-input layer, 
hidden layer and output layer with input and output 
nodes linear while hidden nodes nonlinear. 

0 

Fig. 3.1 h e r  Reametit neural network 

For inner Recurrent Network, only hidden nodes 
have feedbacks with the corresponding weights denoted 
R. It's dynamics can be described as 

O ( k )  = w ' / r ( k )  

h ( k )  = f ' (  w * x ( ~ )  + Rh ( k  - 1) - T) 
Since there are a number of approaches to train 

recurrent network by gradient-based algorithms[ 131 , 
it's not necessary for us to present them in detail. 
Instead, our concentration will be on some novel 
reforms. 

To speed up the training process, we consider to use 
Le's Conjugate Gradient method for unconstrained 
optimization[ 141. Le's Conjugate gradient method is a 
type of conjugate gradient method with dynamic 
optimization of step size a(q). In each iteration q , the 
vector of interconnection weights is improved by 
~ i ( q + + l )  = d q l  + o(q),s(q) where n(q) is chosen to 
minimized w along the search direction d q ) .  The 
algorithm generates n mutually conjugate directions 
and niininiizes a positive definite quadratic function of 
dimension m in at most n steps, where n is the size of 
the vector w . Tlie sequence of search direction ~ ( 4 )  are 
formed by linear combinations of the current steepest 
descent direction and the previous search direction. 

3.2 Alterrmting Training 

Take a closer look at (2.6) 
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y ( k  + j )  = G, ( y ( k ) : v ( k  - 2 ) .  * * * .v( k - q - 11 + I): 
u ( k - 2 )  ,.... ~ ~ ( k - ~ ? - i ~ + l ) : A ~ ( / i ) ; . . A / l ( k  + / - I ) )  

for each training step. N output F, ( k ) .  v2 ( k )  .... . . ~ , ~ , ( k )  

will be produced. but only one desired output .)I,\ ( k )  
will be available to be compared with. To havc a better 
use of y , ( k ) ,  for every N steps. at tlie first stcp. 
compute the errorE = y , ( k )  - . v , (k )  and modify the 
linking weights, then , at the nest step. let 
E = y N  ( k )  -yN-l ( k )  and make another modification of 
the weights. Follow the same procedure until 
E = y N ( k ) - T , ( k )  has been used. Thus in every N 

steps y , ( k )  has been compared with y for N tinies 
and the weights have been modified for N tiiiies rather 
than just one time. This alternating training method is 
supposed to be able to result in much higher 
convergence speed than those batch comparison 
methods. 

IV. SIMULATION RESULTS AND DISCUSSlON 

To demonstrate the effectivencss of our algorithm. 
three examples have been incorporated. 

Example 1. 

y ( k + l )  = O.Ssin(y(k))+O.4cos(rr(k)) 

v(k) = 0 . 7 , / ~ - 0 . 4 ~ ( k - 1 ) ~  
with n = l , ~ ~ r  = l,q = 1. N = 4,and we use 5-15-4 Inner 

Recurrent Network with activation function 

f ( x ) = 1 - e X / 1 + e y ,  learning rate ? ~ = o . I .  n ( ' ) = 0 . 8 . i .  
the result is shown in Fig.4.1 . 

Example 2 .  

y ( k + l )  =0.8sin(v(k-!))+~u(k)  

y( k )  = 4- + 0.62, ( k  - l)v( k - 2 )  + 0.31, ( k - 2) 
with I? = l , i t l =  2 .q  = 2 . N  = 3 .  and we use 6-20-3 
Inner Recurrent Network with learning 
rate TI= 0.15,the result is shown i n  Fig 4 2 .  

Esaniple 3 .  

y ( k  +1) = 0 . 2 y ( k ) 2  -0 .5y (k  - l ) rr (k)  

y ( k )  = 0.7&-+0.3r/(k - 1) 
with i? = 1,m = 1,q = 1,N = 2 .  and we use 5-20-2 Inner 
Recurrent Network with learning rate 11 = 0.15 . the 
result is shown in Fig. 4.3. 

It is demonstrated by the simulation results that our 
algorithm can drive the network to produce estimated 
primary output approsimate to the real output well 
enough. To show its good convergence speed , see Fig. 
4.4 ,where you may notice that the error generated by 
standard B-P algorithm decreases much more slowly 
than by our alternating training algorithm with Le's 
Conjugate method after the error has reached a certain 
level . 

However, there is a conflict that to eliminate local 
minima, as demonstrated in Theorem, we have to 
incorporate enough inputs, it's the increase in the 
iiuniber of inputs that will increase the training time, 
and as the sampling rate decreases, the same happens. 
But this would be of concern only when on-line weight 
adaptation is needed. Ideally this should not be required 
if a representative non-linear neural-based process 
modcl can be found. 

As you may notice that for all of the three 
esaniples , we use three layer networks . that is mainly 
because higher order systems map high order 
nonliiiearities of s j  stem, which could be regarded as 
noise. 

V .  CONCLUSIONS 

The soft-sensor proposed in this paper may be used 
to extend infcrential estimation from linear process to 
nonlinear case. And we borrow sonie idea from 
Generalizcd Predictive Control on which a multi-step 
estimator is presented. Finally neural network has been 
used to realize the predictor since its structure and 
parameters are unknown and if really known , very 
complicated. A novel learning algorithm especially 
suitable for inferential estimation has been used to train 
tlie network.But we still have a postulate that the order 
of the plant is known without which the inputs to 
network will be uncertain and that may result in bad 
estimati0n.A condition under which the given cost 
function may be local minima free has also been 
proposed though may lead to large number of inputs. 
Future work should be on how to eliminate the 
knowledge of plant order and to avoid local minima 
adequately. 
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Fig. 4.2 Estiiuated output with IRNN 6-20-3 
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Fig. 4.3 Estimated output with lRNN 5-20-2 
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Fig. 4.4 ISE against iterations 
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