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Abstract Soft-sensing or inferential estimation has
long been considered a potent tool to deal with the
conflict between small control interval and large
sampling interval existing in a wide variety of
industrial processes. To extend the soft-sensing from
linear system to nonlinear case, we propose a
nonlinear soft-sensor on the basis of multi-step
predication using recurrent neural network and a
novel alternating training method especially suitable
for slowly sampled primary output. The nonlinear
soft-sensor has .been demonstrated by simulation
results to be able to produce qualified estimation
with good convergence speed.

1. INTRODUCTION

In many process control systems there exist a
formidable difficulty concerning the large sampling
rate of the controlled output, ie. .the primary output,
due to measurement device lumitations. Often, these
primary outputs are employed as feedback signals for
process control or for other control actions. Their use,
however, can cause major and prolonged deviations
from set points since disturbance effects remain
undetected in between the long sample periods. And
these effects cannot be sufficiently overcome by existing
advanced controller algorithms and can lead to
unsatisfactory, or even unacceptable control system
performance. Typical cases occur in product control of
distillation columns, biomass concentration control of
fermentation process and Kappa number control of pulp
digesters.

A traditional way to combat this difficulty is to
incorporate secondary outputs, i.c. .the easily measured
variables which are related to the primary output in a
certain way into control system. The application studies
and publications in this field may date back to 1970's
when Brosilow and coworkers first proposed a
controller design method termed inferential control [1].
Since then, a large amount of effort and time has been
devoted to this field, among them. M.T. Guilandoust
and coworkers presented adaptive inferential> control
algorithm in [2]and [3}concerning standard state-space-
based estimator and input-output-based estimator.
M.T.Tham and coworkers discussed multirate and
multivariable self-tuning control and its application in
distillation column study in [4]. T.Mejdell and

S.Skogestad summarized several output estimation
method in [3]. All this work has been done with the
postulate that the controlled plant is linear or at least
functioning adjacently at the working point which
make it possible to be linearized reasonably. For most
real processes, however, especially those chemical
industrial processes such as biomass reactor or pulp
digester there exist strong nonlineraity among
manipulate inputs, primary outputs, secondary outputs
and other relating variables, therefore. the presented
method may not achieve good performance, due to their
inability to deal with nonlinearity. It was this dilemma
that stimulate the research work of nonlinear inferential
control.

Inferential control is largely based on the output
inferential estimation obtained by finding the relation
between primary output and secondary output, hence
‘inferential'. Clearly, here you see the output estimator
has taken the place of measurement device such as
chromatography which is prohibitively expensive. That
is using output estimator as sensor rather than the other
commonly reckoned apparatus, hence, soft-sensing.

As for nonlinear system. how to get the output
estimation remains a main obstacle, fewer work has
been done comparing with the linear case. A typical
method to obtain nonlinear output estimation is to
employ Extended Kalman - Filter using detailed
nonlinear dynamic model of the plant[6] whose
performance may vary with the extent of match
between model and plant. Other work employ
Artificial Neural Network as a useful tool to deal with
the model-based estimator's poor robustness, for more
detail, reader may refer to [7. 8, 9]. But there is still no
guarantee of perfect convergence speed, avoidance of
local minima and most of all, the best use of
information available.

In this paper ., we propose a nonlinear soft-sensor
based on multi-step predication of the output using
recurrent neural network with main effort to combat the
difficuities mentioned above.

1. MUTISTEP PREDICTIVE SOFT-SENSOR

The soft-sensing problem can be stated as follows
(for simplicity. we will employ SISO system to
demonstrate, and all the description can be easily
extended to MIMO case). In a control process. the
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primary output y is generated by the controlied plant at

every sample interval T. but mainly due to the
limitation of measurement device, the sampling value
of ycan only be obtained at interval NT. There are

other variables which can be sampled at interval T and
have more or less relation to y. these are secondary

outputs v, (i =1,2,---, p). Our objective here is to use
easily measured v, and manipulated input u to
estimate unmeasured y , as shown below.
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Fig. 2.1 Insert estimated primary output

We may view the idea in another way as shown in
Fig 2.1, ie., with the fixed primary output ..
obtained every other NT, our work is to insert or
predict estimated primary outputs i between
y correctly enough to approximate the real output

JNT

generated by plant. and for a single slow sampling
internal NT, the work is to predict 3 ¢ the instant of

JNT +T,jNT +2T, «-- jNT+(N-DT.
Suppose that the plant can be described by the
equation:

y(k+1) = f(pk).y(k =D yk—n+1),
u(ky,utk = 1), . u(k —m+1))
with f(-) as a nonlinear function. This function

(22)

f(-)can be taken as a one-step predictor, since we get

y(k +1) using the present and past values of yand .

Could we get multi-step predictor the same way?

Here we will utilize generalized prediction as our
tool to accomplish the task. In [10], Clarke proposed
GPC method first to predict the outputs within
prediction horizon then manipulate control input to let
them follow the reference trajectory. We incorporate
the first part into our work.

675

For a nonlinear system,a similar multi-step
predictor is obtained by the following deduction:

v+ )= (k). y(k—n+ 1 u(k), - u(k-m+1))
= (k) vk ~n+ 1)k =1+ Au(k), -, u(k —m+1))
= F (k). vk —=n+ D uk = 1), u(k —m+ 1), bu(k))

v+ )= ftk~1+ 1) y(k—n+ Yk +j=1), -, u(k ~m+ j))
J-i
= f(ﬁ}-'("""""')’“"”(k"1)+Zu(k +i),0)
=0
= F](y(k),---,y(k-n+1):u(k—-1),-~v.u(k—m+l);
Au(k), -, Au(k+ j—1))

(j=12,.N) (2.3)

Finally we get :
YV = F(YUL AU
Y= (k41 y(k+ N))'n
Y, =(yk)o - y(k—n+1Y,
U, =(u(k =D, u(k-m+1D)ni
AU = (Au(k), - Au(k + N =1))'y

and F(.)is the N-step predicator to be built.

To realilze such a complicated function as F(.}) ,
using ANN seems to be desirable. However, according
to (2.3 ), we must supply{y(k),--,y(k —n+1)}as part
of the inputs to ANN to obtain y(k + j), and among
them. {y(k—1),---.v(k-n+1)}are last time outputs
from ANN, ie ., they should be marked as
{(¥(k =1).---.¥(k —n+D}and therefore (2.3) hastobe
changed into

Yk + )= F(yk), vk =1),- y(k=n+1);
ulk =)o u(k ~m+1),Au(k),--, Au(k + j - 1))
J=L20 N 2.4

It has been demonstrated by Narandra and co-
worker [11] that a parallel identification model like
(2.4) is not preferable to generate stable laws. since
even if the plant is bounded-input bounded-output
stable, there is no guarantee that the parameters will
converge or that the output error will tend to zero. And
in spite of two decades of work, conditions under which
the parallel model parameters will converge even in
linear case are at present unknown.

To overcome this difficulty, we resort to (2.1),
where

Vimmeasured = f ( u, {Vmea:urabln }) )



For simplicity, assume there is only one secondary
output, and we suppose

yR)Y=fulk-D....u(k-mv(k-1,...v(k~q))

2.5)
Substitute {y(k —1).---, ¥ (k —n+1)}by (2.4) will
obtain the changed form of (2.4)

Yk+))=G,(y(k)v(k=2), v(k=g-n+1)
w(k =2) - ulk—m—n+1);Au(k), - Au(k + j-1))
j=L2, N
(2.6)
Remark 1: As has been shown in (2.6), for every NT,
we will get y(k+j)(j=1,-,N~1) between two
slowly sampled output values just as shown in Fig. 2.1,
and with G, well chosen, ¥y, will approximate

y;adequately.

Remark 2: {Au(k), -, Au(k +j-D}1.2,.--.N)
been used as part of the network inputs, which makes
difference from GPC whose future manipulated input
is unknown and could only be obtained through
minimizing the cost function.As for inferential
estimation, the interval between two sampled instants is
not actually ‘future', hence
{Auk), - Au(k +j-D3(1,2.---,N) is known and
what we are supposed to do is just to estimate the
already generated output. Furthermore, the use of
{Au(k), - Au(k + j - 1)}(1.2,.+-, N)demonstrates the
proposed algorithm's ability to have a better use of
available information.

has

Remark 3: The direct obtaining of relationship G, is

considered time and computation consuming and if
possible, finally result in very complicated form. Here,
we try to employ Artificial Neural Network as a

powerful tool to realize G,

. RECURRENT NEURAL NETWORK IN SOFT-
SENSING

Our work requires a system that will store and
update context information, i.e.. information computed
from the past inputs and useful to produce desired
outputs, Recurrent neural networks are well suited for
this task because they have an internal state that can
represent context information. The cycles in the graph
of a recurrent network allow it to keep information
about past inputs for an amount of time that is not fixed
a priori, but rather depends on its weights and on the
input data. In contrast , static networks ( i.e., with no
recurrent connection), even if they include delays ( such
as time delay neural networks {12] ). have a finite
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impulse response and can't store a bit of information for
an indefinite time.

3.1 Inner Recurrent Network and Its Training Method

The topology of a typical Inner recurrent Network
is shown in Fig 3.1. It has three layers--input layer,
hidden layer and output layer with input and output
nodes linear while hidden nodes nonlinear.

Fig. 3.1 Inner Recurrent neural network

For inner Recurrent Network, only hidden nodes
have feedbacks with the corresponding weights denoted
R. It's dynamics can be described as

Oy =wh()
kY= f(Wx(k)+Rh(k-1)-T)

Since there are a number of approaches to train
recurrent network by gradient-based algorithms[13],
i's not necessary for us to present them in detail.
Instead, our concentration will be on some novel
reforms.

To speed up the training process, we consider to use
Le's Conjugate Gradient method for unconstrained
optimization[14]. Le's Conjugate gradient method is a
type of conjugate gradient method with dynamic
optimization of step size ‘9. In each iteration q ,the

vector of interconnection weights is improved by
where ¢@ is chosen to
minimized w along the search direction <. The
algorithm generates n mutually conjugate directions
and minimizes a positive definite quadratic function of
dimmension m in at most n steps. where n is the size of
the vector w . The sequence of search direction @ are
formed by linear combinations of the current steepest
descent direction and the previous search direction.

1
w(q+ ) — w(,q) +a(_q)s(q»

3.2 Alternating Training

Take a closer look at (2.6)



Wk+jy=G(p(k)vk=2), - v(k—qg-n+1)

u(k =2), o ulk—m—=n+1Au(k). .- Au(k + j~1))
for each training step. N output ¥ (k). 7, (k).---. T (k)
will be produced. but only one desired output y, (k)
will be available to be compared with. To have a better
use of y, (k), for every N steps. at the first step,
compute the errork =y, (k) -y, (k) and modify the
linking weights, then , at the next step, let
E =y, (k)-P,_, (k) and make another modification of
the weights. Follow the same procedure until
E =yy(k)-y,(k) has been used. Thus in every N

steps y, (k) has been compared with j/ for N times

and the weights have been modified for N times rather
than just one time. This alternating training method is
supposed to be able to result in much higher
convergence speed than those batch comparison
methods.

V. SIMULATION RESULTS AND DISCUSSION

To demonstrate the effectiveness of our algorithm.
three examples have been incorporated.

Example 1.

vk +1) =0.5sin(y(k)) +0.4cos(u(k))

v(k) = 0.7fv(k = 1) - 0.4u(k - 1)°
with n=1m=1,9=1.N =4.and we use 5-15-4 Inner
Recurrent  Network  with  activation  function
F(x)=1-¢"/1+¢". learning rate 5=0.1. o) = 0.85.

the result is shown in Fig.4.1 .

Example 2.

y(k+1) = 0.8sin(y(k - 1)) +3u(k)
y(k) - \"(k - 1) +O.()l/(k — l)v(l\ - 2) +03ll(/\ - 2)
with np=lm=2.g=2.N=3. and we use 6-20-3

Inner Recurrent Network with
rate s7= 0.15,the result is shown in Fig 4.2.

learning

Example 3.

Yk +1) =0.2v(k)? -0.5v(k - Du(k)
Y(EY=0TJv(k =D +0.3u(k-1)
with n=1,m=1,g =1 N =2. and we use 5-20-2 Inner

Recurrent Network with learning rate p=0.15 . the
result is shown in Fig. 4.3.
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It is demonstrated by the simulation results that our
algorithm can drive the network to produce estimated
primary output approximate to the real output well
enough. To show its good convergence speed , see Fig.
4.4 ,where you may notice that the error generated by
standard B-P algorithm decreases much more slowly
than by our alternating training algorithm with Le¢'s
Conjugate method after the error has reached a certain
level .

However, there is a conflict that to eliminate local
minima, as demonstrated in Theorem, we have to
incorporate enough inputs, it's the increase in the
number of inputs that will increase the training time,
and as the sampling rate decreases, the same happens.
But this would be of concern only when on-line weight
adaptation is needed. Ideally this should not be required
if a representative non-linear neural-based process
model can be found.

As you may notice that for all of the three
examples , we use three layer networks , that is mainly
because higher order systems map high order
nonlinearities of system, which could be regarded as
noise.

V. CONCLUSIONS

The soft-sensor proposed in this paper may be used
to extend inferential estimation from linear process to
nonlinear case.And we borrow some idea from
Generalized Predictive Control on which a multi-step
estimator is presented. Finally neural network has been
used to realize the predictor since its structure and
parameters are unknown and if really known , very
complicated. A novel learning algorithm especially
suitable for inferential estimation has been used to train
the network.But we still have a postulate that the order
of the plant is known without which the inputs to
network will be uncertain and that may result in bad
estimation.A condition under which the given cost
function may be local minima free has also been
proposed though may lead to large number of inputs.
Future work should be on how to eliminate the
knowledge of plant order and to avoid local minima
adequately.
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