
Proceedings of the 8 World Congress on Intelligent Control and Automation June 10-14, 2002, Shangha, P.R.China 415 

Selecting secondary measurements for soft sensor modeling 
using rough sets theory 

Luo Jianxu 
Institute of Automation 

Shanghai Jiaotong University, 200030 

Abstract: This paper contributed to introduce the rough sets 

theory for secondary measurements selection of soft sensor 

modeling. Using rough sets theory, a smaller set of secondary 

measurements containing the most information of the 

primary variable can be found. This method is used in 

Shanghai Refiery for the soft sensor estimating the 

propylene composition and got good result. 

1. ~TRODUCTION 
A major problem in product quality control is the lack 

of online quality sensors. Although in some cases analytical 
instruments are available, they possess substantial 
measurement delays, which make timely control 
impossible. Soft sensing technology is an economical and 
efficient solution for this problem [‘I. Soft sensor is a 
modeling approach to estimating hard-to-measure process 
variables (primary variables) from easy-to-measure, online 
process sensors (secondary measurements). 

A key stage of soft sensor modeling is the selection of 
secondary measurements, which have functional 
relationship with the estimated variable, h m  a large set of 
measurable candidate variables. The selection of secon- 
measurements includes the selection of types, numbers, and 
locations. Type selection usually depends on the 
mechanism analysis of the chemical process under 
investigation. The novel criterion is [’I: The selected 
secondary measurements should satisfy the requirements of 
sensitivity, accuracy, and robustness, etc. 

The optimal secondary variable number is still an 
unresolved question. From the point of the view of cost 
considerations, mainly including investment and daily 

maintaining, a smaller set of secondary measurements is 
preferable. While from the viewpoint of covering more 

Information about the primary variable, people like to 
choose more measurements as secondary~variables. Mejdell 
and Skogested 13] employed all available sensor signals as 
s e c o n w  variables to estimate the distillation column 
product composition, while Weng [‘I chose only one 
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temperature parameter as secondary variables for 
distillation column composition estimation. 

Structured Singular Value analysis is a usually used 
approach to secondary measurements selection, which is 
adopted by WisnewskilS1 , Luo[’] etc. Weng [‘I used 
Karhunen-Loeve Transform for secondary measurements 

selection. These methods are usually implemented on 
simulation models, and are preferable for designing the 
optimal location of the secondary measurements. 

This paper proposed a new approach to selecting the 
secondary measurements, by using rough sets theory (RST). 
RST was exposed by Pawl& as a method of set 
approximation in 1982 16]. The integral part of RST is the 
construction of rule using reducts, which are particular 
subsets of the attributes providing classifications with the 
same quality of approximation as the full set of attributes[’]. 

The approach proposed in this paper makes use of 
the historical data collected from DCS, and the data is 
analyzed by the RST, then the subset of attributes, which 

can represent the primary variable, is found. This 
paper is organized as follows: the principles and 
concepts of the rough sets theory are introduced in part 2; 
the stages of the secondary measurements selection 
using rough set theory are represented in part 3; a 
practical application of the approach in Shanghai 
Refinery is introduced in part 4; at last the conclusion is 
showed in part 5 .  

2. ROUGH SET THEORY (RST) 

2.1 Information system 

An information system S =< U, A, V,F > consists 

of U : a nonempty, finite set of objects (or cases), 
U = { x  , . . . x n )  ; A : a nonempty, finite set of 

a@ributes,A = { A l , , , . A n }  i Y : the domain set of A ,  

V =  {V ,... Y,,) , where Vi is the domain of 

A, ; f :  U x  A + Y , an information function , 
f ( x . , A  .)E Y .  . An information system can be 

1 

1 

‘ I  I 
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represented with a decision table. In a decision table, the 

columns are the values of each attribute, and the rows are 

the objects. If an attribute is superfluous, it can be removed from 
Definition 2.1: F~~ an information .the information system, while an indispensable attribute 

=< A,  v, > , let E A , an indiscemibility carries the essential information about objects of the 
information system, and it should be kept to retain the 
characteristic of the information system. 

IND(R) = m D ( R  - { r ) )  , otherwise r is indispensable in 

R . 

relation is defined as follows: 

IN4B) = {(+?)E Ux UlbCy) =bC2),vbE B) = f lIN4b) 

We say that x1 and x2 are indiscernible by set of 

h B  R is independent if for every r e  R , r is 
(2.1) , , 

mdspensable. 

Definition 2.6: For a subset of attributes P c R , if 

there exists Q = P- ( r }  , Q E P , satisfying 

IND(Q) = IND(P) , and Q is independent, then Q is 

called a reduct of P, denoted as RED(P) . 
Definition 2.7 : The set of all indispensable 

attributes inP contained by all red& is called the core 
of P , denoted as: 

attributes B if b(x,)=b(x2) forevery be B.  
An order pair AS =< U,IND(B) > is called an 

approximation space. 

Definition 2.2: For any element X E  U , B c A , the 

equivalence class of x in relation B represented as 
[XI,. and is defined as follows: 

cowr) = n m q p )  (2.6) [ X I ,  = (Y E U I ( x , Y )  E IND(B)I (2.2) 
It is the equivalence class determined by x, which means 

each object in [XI, has the same attribute B value with 

that of x . 
3. USING RST for SECONDARY VARIABLE 

SELECTING 

Definition 2.3: Let X c U ,the lower approximation of 
Xin  AS for Bisdefmedas: 

B ( X ) = U { Y E  U / I N D ( B ) I Y c X }  - 
12.3) 

and the upper approximation of X in AS for B is 

defined as: 

B ( X )  U ( Y E  U/hVD(B) I Y fl X # O }  

(2.4) 
For any X E  g ( X ) ,  it is certain that it belongs to X 
with respect to B , and for anyxE B ( X )  ,we can only 

say that x is possible to belong to X . 
Definition 2.4: Further more, we define the positive region 

and the negative region of X with respect to B : 
P O S B ( X ) = B ( X ) ,  N E G B ( X ) = U - B ( X )  

The positive region POSB(X)  includes all objects in 

U which can be classified into classes of 
IND(B) without error just based on the classification 

information in IND(B) . 

2.2 Core and Reducts of attributes 

Definition 2.5: Let R c A be an equivalence relation, 
r e  R , the attribute r is superfluous if 

(2 .5)  

3. I Get initial information system using the sample data 
set 

Consider MIS0 system. Suppose there are m pieces 

of sample data, in the form {x,,x2,x ".... y}. The sample 

data set is used to generate the information 
system: S =< U ,  A, Y, f > , where U is fmite universe of 

objects, here is the m pieces of data, A = C U D is the 
set of finite attributes , C = ( x i }  is the set of condition 

attributes,@ere is the input variable x i ) ,  D = ( y )  is the 

set of decision attribntes,(bere is the output variable y ), 
V = U Vr is the set of all possible attribute values , 
Vr is the range of attribute r , rE R , and 
f : U x R + V is the information function. The initial 

information system can be represented with table 3.1. 

E R  

Table1 3.1 initial information system 

U x, x7 x, xi Xn v 
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3.2 Discretization of continuous altribute values For attribute set c , c =  { x l , x  2,...+,] , if 

n ( e  - { x i } )  = n c  I then xi in c is superfluous. How 

to judge weather xi is superfluous or not? If no 

incompatible objects (which means they have same 
condition amibutes but different decision attribute) will 

appear after xi is removed, then xi is superfluous. 

Remove all superfluous attributes from attribute set c ,'and 
the left attributes are considered as secondary 

measurements. 

There exist a great number of successful discretiation 

algorithms and applications ['I, such as 
equal-width-intervals, equal-frequency-intervals, Minimal 

Entropy Method and fuzzy method etc. In this paper, we 

apply fuzzy method to condition attributes, and 

equal-width-interval method to the decision attribute. 

a. Fuzzy discretization of condition athibute value 

For each condition attribute x i ,  (xi E /xt- ,x- I), 
I x r - , x F a l  is divided into mi parts. Each partition 

the membership function value of the point is 1 ,  The 

membership function of A..is Gaussian function. 

4. APPLICATION 

correspon~ a fuzzy set A . . ( ( ,  = 1,2,.....m.), and A schematic of a distillation column operated by 
Y I Shanghai refmery is'shown in Fig. 4.1.Tbe whole system 

contains tower A, tower B, and tower C. The main product 
is propylene, whose composition in the top product and in 
bottom product of the tower C needs to be estimated. In the 
following contents, we'll concentrate on the estimation of 
the propylene in the top product, and apply the RST 

corresponding to a discrete value k approach to selecting the secondary measurements for soft 
maximal membership function value, then select s as the Sensor predicting the propylene composition. All 

discrete value of )c,. measurable candidate measurements are listed in the Table 
b. Equal-width-interval discrefbation of decision attribute 4.1. 

value 

Y 
Suppose xu is the value of the attribute xi ,  let 

(3.1) 

is the fuzzy subset of x. I and it is also 

Here, Ais has the 

p4s ('ti) = k{l, ....mi) ' A .  Ik (xii)' 
where A .  rk 1 

For decision attribute, y e [ymin,ymaxI , divide 

\ymin,ymax] into ni parts , eachpartitionpoint is Y . ,  

j s  (1,2,3..ni) If y is a decision attribute value, seek 
Yk , satisfied the following equation: 

(3.2) 
k is the discrete value of y . 
Substitute the continuous attribute values with 

discrete athibute values in table 3.1, and then we get the 
discrete information table. We defme a confidence for each 

object as follows: 

J 

ly-Ykl = min(ly-q}, k s  (1,Z , . x i )  

pFp.B 
(3.3) 

Fig 4.1 The schematic of the +stillation column 

TABLE4.1 MEASUREBLE CAhlJIDATE MEASUREMENTS 

p k  = i = p . , n p z ( x , k i )  

Here, k is the kth object. 

3.3 Choose secondary measuremen& set by removing the 
superfluous condition athibutes Item Label Item Label 

Bottom pressure PCO4 Feed temperahre TD17 

Top kmperaNre TD20 
If an attribute is superfluous, it can be removed fiom 

Feed flow mte FCl2 Reflux temperame TDZl the information system, while an indispensable attribute 

Reflux flow rate Fe15 Bottomtemperahre TD22 carries the essential information about objects of the 
information system, and it should be kept to retain the ~ o p y l ~ ~ ~ ~ ~ ~ ~ ~  ~ ~ 1 6  ~ ~ h i l ~ t e m p e r s h l r e  .mz3 

Feed flow rate OftoWCr A Fcol 

' characteristic of the information system. Pmpmcflowmte FCIS 
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The propylene composition (denoted as ANIIOI) is 
sampled once every four hours and analyzed in laboratory. 
We collected 50 samples of the primary variable (the 
propylene composition) from laboratoly analysis and the 
corresponding 50 samples of each measurement from DCS. 
These data are used for RST-based secondary 
measurements selection 

The initial information system is established using the 
data samples as table 4.2 in appendix represents. According 
to the discretization method described in the part 3, we 
discretize the input variables (the candidate secondary 
measurements) into four attribute values, and the primary 
variable into three athibute values. Then the discrete 
information table is obtained as table 4.3, in appendix, 
shows. 

For further processing of the decision table, we fmt 
combine the objects with the same condition attributes 
values and the same decision attribute values. Then for 
incompatible objects, keep the object with bigger 
confidence, remove the object with smaller confidence. In 
this case, after the processing, a table (table 4.4) of 49 
objects is obtained. 

Then judge which condition attribute is dispensable. 
The judge method is: remove the amibute from the 
decision table (a whole column of the decision table), if 

incompatible objects appear, then the attribute is 
indispfnsable, otherwise the amibute is dispensable. For 

example, judge whether FCOl is dispensable or not. 
Remove FCOl out of the decision table, there are not 
incompatible objects appearing in the new decision table, 
so FCOl is superfluous and can be removed. On the 
c o n b y ,  if FC02 is deleted fiom the decision table, (table 
4.5 is the corresponding decision table) then object 13 and 
object 14 have same condition attributes but different 
decision attributes. They are incompatible. So FC02 is 
indispensable. 

After all condition attributes are processed, the subset 
of indispensable condition attributes includes six attributes: 
FC12, TD20, TD21, FC15, TD23, and FC16. These 
variables are selected as secondary measurements. From 
the viewpoint of the mechanism analysis, the tower top 
temperature, the reflux temperature, the feed flow rate, and 

the top flow rate etc are most relevant to the top 
composition. 

5. CONCLUSION 

In this paper, we developed a new approach to 
selecting secondary measurements using rough sets theory. 
This approach can find a smaller set of secondary 
measurements from a large set of all available online 
measurements, and contain the most information ahout the 
primary variable. The application of this approach in 
Shanghai Refinery shows that it is a helpful method for 
secondary measurements selection in soft sensor modeling. 
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APPENDIX 
TABLE 4.2 INITIAL INFORMATION SYSTEM 

Fcol FCI1 rCar TD20 TDll Tml TDl7 FClS TDU FCI6 FCL8 AN01 
vb flh Mp. a. 'r *r a. vb a. flh vb V% 
24.9 8.28 1.91 48.5 37.3 57.9 60.0 89.0 57.8 7.0 1.8 97.53 
25.2 9.4 1.91 48.5 37.0 57.8 59.6 90.2 57.9 6.9 1.8 97.10 
24.8 7.0 1.90 48.4 36.9 57.7 59.8 89.8 57.7 7.1 1.8 9724 
24.9 9.3 1.89 48.5 38.6 $7.9 60.1 90.8 57.9 7.1 1.8 97.07 
25.1 9.3 1.91 48.3 38.7 57.7 59.8 89.6 57.9 7.4 1.8 97.74 
25.0 9.1 1.90 48.4 38.8 57.7 60.0 89.8 57.9 7.2 1.8 97.41 
25.2 8.5 1.90 48.3 39.3 57.8 60.0 90.8 57.8 6.7 1.9 97.13 
24.8 8.7 1.91 48.5 39.9 $7.9 59.9 89.8 57.9 7.4 1.91 96.85 
24.9 8.3 1.90 48.3 40.1 57.9 59.5 90.5 58.0 7.0 1.9 96.67 
25.0 8.0 1.91 48.4 40.0 57.9 59.9 90.3 57.9 5.4 2.1 96.92 
24.9 8.7 1.91 48.4 40.2 57.9 59.9 89.9 58.0 5.0 1.9 97.16 
25.3 7.8 1.90 48.5 39.8 58.0 59.6 91.3 58.1 6.0 1.9 97.18 
24.8 8.9 1.9 48.3 37.4 57.4 59.1 89.6 57.5 7.0 1.8 97.05 
25.0 8.3 1.9 48.3 37.3 57.4 59.7 89.9 57.5 7.1 1.8 97.59 
25.0 8.6 1.9 48.4 37.4 57.5 59.9 90.4 57.7 7.7 1.8 97.33 

24.8 9.1 1.91 48.4 34.9 57.7 59.3 90.4 57.7 6.7 1.6 97.32 

TABLE 4.3 DISCRETE INFORMATION SYSTEM 

TABLE 4.4 DECISION TABLE AFTER COMBINATION AND DELETlON 

TABLE 4.5 DECISION TABLE WETHOUT FCOZ 

49 I 3 3 3 2 3 2 3 2 2 2 3 


