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Robustness of Dual-rate Inferential MPC Systems 

J.A. Rossiter, J. Sheng, T. Chen and S.L. Shah 

Abslrrrcf-This paper investigates the robustness of dual- 
rate MPC systems with a proposed inferential control strategy. 
It shows that for some scenarios where a high-frequency 
model plant mismatch is presented, such dual-rate inferential 
MPC systems may be more robust than fast single rate MPC 
systems. 
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I .  INTRODUCTION 

A system is multi-rate (MR) when its inputs and outputs 
are sampled at different rates. When output measurements 
are available at a slow rate (SR), which is an integer 
multiple m slower than the fast rate (FR) at which the 
input is updated, the system is dual-rate (DR). This paper 
considers robustness [SI of DR model predictive control 
(MPC); prediction models always include some model plant 
mismatch (MPM). 

Unfortunately the tools of linear control analysis cannot 
be applied easily because MR systems are periodically 
time varying. Two popular approaches adopted to handle 
MR systems are: (i) inferential control (IC) [3], and (ii) 
the lifting technique [2] .  With the lifting technique, [6]  
shows that DR MPC systems may lose robust stability when 
the integer m (the sample rate ratio) increases. Since DR 
systems with large m are common, it is important to design 
control schemes for DR systems whose stability robustness 
can be guaranteed when m is large. [4] indicates that the 
IC technique can be used to achieve this. 

This paper gives a new insight to the robustness of DR 
inferential MPC systems and their stability robustness. In 
particular it is demonstrated that, contrary to intuition, for 
some scenarios robustness actually improves as m increases 
and hence DR control may be more robust than SR control. 
Robustness analysis will be discussed in Section 11, illustra- 
tive examples in Section III, and conclusions in Section IV. 
For simplicity of notation the presentation is restricted to 
single input single output systems. 

11. ROBUSTNESS OF DUAL-RATE INFERENTIAL MPC 
In this section we will study the stability robustness of 

DR MPC systems in the presence of MPM, considering the 
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inferential control scheme to be proposed in the following. 

A. Proposed inferential control 
IC [3] uses an internal process model, as shown in 

Figure 1. In this paper, we assume that the model with 
input U and output Q has the following form, 

where nu, n, are prediction and control horizons, respec- 
tively; u.. is the current estimate of the input required to 
remove steady-state offset and L is used to denote a vector 
of ones of appropriate dimension to its use. Given a one 
step ahead prediction model - the fast rate model (I) ,  the 
formulation of predictions is well known (e.g. [5 ] ) ,  so the 
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reader is referred there for details ofthe matrices H ,  H a ,  P 
used next. 

In summary a vector of output predictions is given as 
follows: 

+ $ = H 2  f Haus, f P% + L[Yk - $km], (3) 

where yk - $km is the error between the most recent 
process measurement yk (note that yk = y(k . mT)) and 
the corresponding model output y k m  ; and 

- -  
(4) 

Every fast sample, a sequence of future control inputs I 
is calculated so that the following performance index J can 
be minimized: 

subject to Ukm+i = us*, i 2 n,, where r is the set point. 
Since MPC is a receding horizon control strategy by 

nature, a constraint-free solution Ukm can be found by: (i) 
substitution into (5) from (3); (ii) differentiation w.r.t. 21; 
( 5 )  setting the gradient to zero; and (iv) implementing the 
first element of the computed sequence and discarding the 
other elements. Thus, 

Ukm = [ 1 0 ' '  ' 0 ] [ H T H  f XI]- ' {HTX - LU.,} 

(6) 
where X = 5 - P? - H,u., - L(yk - $k,,.). For the 
next sample, Ukm+l  can be found by repeating the above 
procedures. 

In this DR inferential MPC, the prediction (3) and the 
minimization of J in (5) are carried out every fast period 
T. But the offset yk -&km in (6)  is only updated every slow 
period mT. 

B. Robustness of dual-rate inferential MPC 
In this section, we will investigate the robust stability of 

the dual-rate predictive control system with the proposed 
IC scheme in the presence of MPM. 

The law (6) is periodically time varying, due to the term 
yk - &,. However, as model (1) is known, we can lift [l], 
[Z] the m control elements in one slow period and the lifted 
control law (at the slow rate) is time invariant. Next we will 
show how to obtain the lifted control law. 

Rewrite (6) as follows: 

Ukm = MI: + M z ~  + M3uL.s + M4(Yk - Ykm), (7) 

where Mi, i = 1 ,2 ,3 ,4  are all constant matrices: 

M4 = - 
(8) 

Next, as a precursor to computing the loop sensitivity, 
we represent the control law in transfer function form. For 

simplicity and without loss of generality, in the following 
we ignore the term U,, and substitute into (7) from (4). 

Rewriting (7) using shift operators q-' gives 

M6Ukm = M6r + M78km + M4(Yk - O h " .  (9) 

where M,  and M7 are the polynomials: 
n "-1 

and 
n" 

M6 = x M i ( i )  (1 1) 
i=l 

M , ( j )  means the j- th element in the constant matrix M, 
(i = 1,2); r is the set point signal and, as it does not affect 
loop sensitivity, is assumed constant for convenience. 

In each slow period mT, control law (9) is used m times 
to compute the m 'inter-sample' fast rate control inputs, 
that is: 

MsUk,+i = M 6 T  + M7Ykm+i f M4(Yk - ykm), 
i = O  . . .  m-1 .  

1 ,  

(12) 
where again the reader is reminded that the term (yk -Ckm) 

is the same in each of these m updates. 
Next in order to find the slow rate lifted control law which 

depends only on the output measurement Yk, we need to 
eliminate the $ terms which can be done using (12) and 
(1). First define U,, Yk as the lifted fast rate control inputs 
and predicted outputs, respectively 

Ukm i k m  

U & = [  j 1 ,  y k - [  j 1 ,  (13) 

Ukm+m-l Ykmtm-1 

and hence represent the lifted control law by writing all m 
equations (12) as simultaneous equations: 

diag[Ms,...,Ms]Uk = [ M6 ' . .  M 6 I T r  
+ diag[M?,.. . , M?]Yk (14) 

T + [ M8 " '  M8 ] (Yk-$km) .  

Second, the lifted IC control law (14) is further simplified 
by eliminating y as follows. Assume the fast rate process 
model (1) is given and derive two lifted models: C1 and 
CZ. The former is a model with m inputs and m outputs, 
corresponding to Yk = & u k ;  the later is a model with 
m inputs and one output, corresponding to ykm = &Uk. 
Replacing Yk and $mk in (14) with Cluk and C2uk 
respectively, (14) becomes: 

u k  = S T  - RYk, (15) 

here S and R are polynomial matrices and their derivation 
is straightfonvard; r is a constant reference signal, and Yk is 
the slow rate actual process output. The underlying period 
of the lifted controller ( 1 5 )  i s  mT. 

252 



We remark that the lifting technique is used here to derive 
the lifted control law (14); however, elements in the lifted 
control input Vk in (13)-(15) are calculated separately. This 
is different from the results in [6],  where the time varying 
DR system is converted into a time invariant single-rate 
system (with underlying period mT) by applying the lifting 
technique, so that the lifted control input is computed as a 
whole. The purpose that we use the lifting technique in this 
paper is to obtain a time invariant control law so that the 
robust stability of the DR closed loop system in terms of 
the ratio m can be analyzed as that for a single-rate system. 

The key observation is given next. From (6) and hence 
implicit in (14), the effect of the MPM upon the control law 
will be proportional (roughly) to a factor of l lm,  because 
the term Y k  - &km is updated only every mth sample. 
The logical conclusion therefore is that sensitivity to MPM 
improves as m increases until in the limit as m ---* 00 

(equivalent to removing the feedback path), the controller 
behavior is unaffected by MPM. 

The effect of integer m on the robust stability of example 
closed-loop systems can be observed from plotting the sen- 
sitivity function' Taen = C,Pf(l + c,fi)-'. 4 represents 
the lifted true process (input u k ,  output the slow sampled 
yk) and C, represents the corresponding lifted controller 
(15), with input the slow rate yk, and output the lifted u k .  

111. SIMULATION EXAMPLE 

In this section, we will give an illustration example to 
support our observation. The real process is the same as 
that used in [6]. It is a continuous-time system 

(16) 
1 

( s + 1 ) ( 3 ~ + 1 ) ( 5 s + l ) '  

and a first order discrete time model with sampling period 
1 second is identified as: 

(17) 
O.O419z-' + 0.0719~-~  

1 - 0.8969r-' ' 

We emphasize here that the model plant mismatch for this 
example is significant in the high frequency. 

The input is manipulated every 1 second, but the mea- 
surement is available every m > l second. For inferential 
MPC (6) based on (17), the tracking performances and the 
sensitivity functions for different m are shown in Figures 2 
and 3, where ny = 10, n, = 2, and X = 0.1. 

For this case DR inferential MPC is more robust than fast 
SR MPC in the sense that (i) the bigger m, the better the 
performance; and (ii) the effect of the MPM on performance 
reduces as m increases. These observations are in contrast 
to those in [6], which used a lifted MPC scheme. 

Similar conclusions can be found in [4]. However, the 
inferential control scheme used there is different; it uses 
a periodic switch between y and y. The scheme proposed 

'the sensitivity function we defined in this paper has the same form 
as the classical complementary sensitivity function defined in most of the 
literatures 

0 1  I i 
I".,-) 

Fig. 2. Tracking performances with diKermt m 
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Fig. 3. Sensitivity functions with different m 

here avoids effects caused by the abrupt change between & 
and y. 

IV. CONCLUSIONS 

Contrary to common expectation, for some examples 
DR control may be more robust to MPM than single rate 
control. It is shown that if there is significant MPM in the 
high frequency, then there could be benefits from sampling 
the model measurements at a slower rate. 
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