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Abstract 

In many batch processes, frequent process 1 feed- 
stock disturbances and unavailability of on-line mea- 
surements make tight control of product quality very 
difficult. Motivated by this, we present a simple data- 
based method in which measurements of other process 
variables are related to the end product quality us- 
ing a historical data base. The developed correlation 
model is used to make on-line predictions of the end 
quality, which can serve as a basis for adjusting the 
batch condition time so that desired product quality 
may be achieved. This strategy is applied to a methyl 
methacrylate (MMA) polymerization process. Impor- 
tant end quality variables, the weight average molecu- 
lar weight and the polydispersity, are predicted recur- 
sively based on the measurements of the reactor cooling 
rate. Subsequently, a shrinking-horizon model predic- 
tive control approach is used to manipulate the reac- 
tion temperature. The results in this study show much 
promise for the proposed data-based inferential control 
method. 

1 In t roduct ion  

Batch operation is often the preferred choice 
for producing low volume / high value-added ma- 
terials, including certain polymers, fine chemicals, 
bio-chemicals, semi-conductors, etc. In order to de- 
rive the maximum benefit from batch operations, 
product quality must be controlled tightly. Tradi- 
tionally, engineers have attempted to achieve this 
indirectly by controlling some secondary variables, 
such as temperatures, pressures, and flow rates. 
However, with frequent feedstock variations, the 
policy of controlling operating variables over some 
fixed trajectories does not lead to consistent prod- 
uct qualities. 
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Statistical process control (SPC) method is 
helpful to combat this problem in some aspects 
[5]. In that paper, on-line measurements of process 
variables are used to  detect various abnormalities. 
The SPC method, while effective for detecting ab- 
normal batches early on, does not help reduce nor- 
mal batch-to-batch variability. 

In a recent paper by Yabuki and MacGregor 
[Ill, on-line as well as infrequent off-line measure- 
ments are used a t  some mid-course point to pre- 
dict the final product quality. The correction move 
needed is then calculated and implemented if the 
predicted quality deviates significantly from the 
target. Joseph and Hanratty [4] proposed a sim- 
ilar approach that relies on neural network models. 
However, the assumption of known initial condi- 
tions restricts the applicability of this procedure. 
Russell et al.[7] recently proposed a method to pre- 
dict and control the end quality using on-line pro- 
cess variable measurements on a recursive basis. As 
an extension, Chin et aZ.[1] developed a technique 
to conduct the quality control and tracking con- 
trol simultaneously. In their technique, real-time 
feedback control and batch-to-batch learning con- 
trol are combined for an improved result. The bot- 
tleneck for all these techniques lies in obtaining an 
accurate model. 

In this paper, we examine the effectiveness of 
the method by Russell et aZ.[7] in controlling the 
product qualities for a PMMA process. Relevant 
secondary measurements are identified and their 
effectiveness in predicting the final product qual- 
ities in the presence of disturbances and noises are 
examined. Finally, the benefits from manipulating 
the reaction temperature based on the on-line pre- 
dictions are demonstrated. 
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2 Data-based Procedure Introduction 

2.1 Formulation of On-line Quality Predic- 
tion 

The main difficulty in quality control for batch 
processes stems from the fact that the operator has 
to rely upon secondary measurements to monitor 
and control the process since the measurements of 
the end product quality do not become available 
until the batch is finished. Therefore, for achieving 
tight quality control, the main issue is how to de- 
velop a model that enables an accurate prediction 
of the end quality based on the input and output 
measurements available during the batch. A gen- 
eral form of the end-quality predictor we consider 
is: 

Qtf li represents the end-quality predicted using yi, 
the measurements collected up to  the i-th sample 
time, as well as U ,  the input trajectory for the en- 
tire batch. t f  is the total number of sample time 
steps during a whole batch and therefore represents 
the total batch time. The challenge is to identify 
this relationship from existing data and without a 
fundamental model . 

To simplify the identification task, one may 
choose to develop a linear predictor that corre- 
sponds to the linearized form of the above general 
predictor with respect to some ‘‘nominal” (mean or 
reference) trajectories )I?, U’: 

where $ = yi - Y?, etc. From here on, the super- 
script {}’ will be suppressed for the convenience of 
exposition. 

In order to  build the suggested empirical model 
for on-line quality prediction, certain problems as- 
sociated with the nature of batch processes must 
be addressed. First, to detect quality deviations 
and make necessary corrections in time, we need to 
be able to predict the end-quality accurately based 
on partial batch information. Hence, the predic- 
tions are developed over the progression of a batch, 
preferably at a number of sample steps located in 
different phases of the operation. This may require 
several models to be developed, one for each sam- 
ple time at which the prediction is desired. Al- 
ternatively, one may develop a single model that 
uses all the measurements collected during a whole 
batch, but in order to  use such a model during a 

batch, one must somehow fill in the missing future 
measurements. 

2.2 Recursive Prediction Procedure 
This problem was addressed in Russell et a1 

[7]. In their work, a statistically optimal linear re- 
cursive predictor of qt, is formulated based on a 
Kalman filter with state 2 = [YTq$;IT. The state 
of the Kalman filter consists of all the on-line mea- 
surements to  be collected during a batch from t = 0 
to t = t f  . Let us ignore the effect of the determinis- 
tic input U’ for the moment. Then, the state-space 
model used for the filter design is: 

2i+1 = 2i (3) 
yz = [ O . . . O  Inv O . . . O ]  2i (4) -. 

Ci 

Ci is a time-varying matrix that picks out from 2i 
yi, the measurements collected at  the i-th sample 
step. The Kalman filter equations are given by: 

&+lIi+l = 2ili + Ki+l[yi+l - ci+lilil ( 5 )  

Ki+l = ~ i , i C ~ ~ ( C i + l ~ ~ I i C ~ l ) - ’  (6)  
Pi+lli+l = (1 - Ki+lCi+l)Pili (7) 

This Kalman filter is to  be initialized with the 
covariance matrix calculated based on historical 
batch data (Polo = 2(i)zT(i), where N is 
the number of batches used for modeling). As new 
measurements become available, the predictions of 
the quality variables are recursively upgraded based 
on the correlation between the measured states and 
the quality variables (given by the covariance ma- 
trix). Note that the quality predictions are simply 
the last nq elements of the filter state estimate: 

&,li = [ 0 ... 0 I., ] 2 4 i  

Having developed the recursive predictor for 
the purely stochastic case, the effects of determin- 
istic inputs can be added in a straightforward man- 
ner. First the input effects on the measurem_ent and 
end quality can be modeled as 2 = B,U + 2. Then 
the input effects are subtracted from the original 
data for 2, leaving the residual data, 3 = 2-B,U, 
that contain the correlation between y and qt, that 
is irrespective of the deterministic input moves. 
The Kalman filter can be then formulated just as 
before. 

2.3 Reducing Model Dimension 
Another difficulty in developing the prediction 

model from historical data stems from the large 
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dimension of inputs and outputs and strong corre- 
lation that exist among them. This not only results 
in a high demand for computation and storage, but 
also makes the initial covariance matrix Polo ill- 
conditioned and very difficult to identify. To over- 
come both the high dimensionality and the condi- 
tioning problem, multivariate statistical methods 
such as the principal component analysis (PCA) 
can be used to project the filter state 2 onto a 
subspace of a muchjower dimension to create a 
reduced-order state z: 

- 2=P2=[? ; ] [ ; , I  (9) 

where Py is a matrix that projects Y to a lower 
dimensional space through PCA. 

For the reduced-order filter design, the follow- 
ing model can be used: 

zi+l = - zi +b,uz (10) 

yi = CiZi+€i (11) 

where bi = Pbi and bi is the ith column of the input 
matrix B,. Note the followings: (1) In the above 
model, the effect of the deterministic input is en- 
tered recursively; hence, zi contains the effect of 
the input uo,.. .  ,ui-1. (2) A residual error term 

has been included in the measurement equation. 
This modification is necessary, because some infor- 
mation is inevitably lost in the process of project- 
ing the state vector down to the lower-dimensional 
space. 

A Kalman filter can be designed straightfor- 
wardly based on the above model. And, the quality 
prediction is given by: 

r r ui 1 1  

mulated as a quadratic optimization problem, 

minitTfliA4itfli + [U:(8$)]TA,U:(8+) (13) 
e+ 

where U: represents the future input trajectory 
(with respect to the i-th sample step), which is 
parameterized through the vector 6';. A, and A, 
are weighting matrices. Although all the future in- 
put moves are calculated, only the moves for the 
present phase are implemented and the rest are 
recomputed at the beginning of next phase. The 
number of input parameters calculated decreases as 
the batch proceeds, giving rise to the name "shrink- 
ing horizon control". 

3 MMA Process In t roduct ion  

Methyl Methacrylate (MMA) is an important 
industrial material. Modeling and control of MMA 
batch polymerization system has received much at- 
tention. Most of the previous work ([10],[6],[2]) fo- 
cus on the problem of tracking a pre-determined 
temperature profile and hence the control of end- 
quality could suffer when initial charge distur- 
bances occur. Ellis et a1.[3] implemented on-line 
estimation and control of molecular weight distri- 
bution on an experimental MMA solution polymer- 
ization system, based on a two-time scale EKF. But 
the fundamental model needed to design the EKF 
is generally very difficult and expensive to develop 
in practice. The data-based procedure adopted in 
this paper offers the advantage of easy implemen- 
tation and should therefore be a viable alternative 
for industrial applications. 

MMA polymerization is a typical free radical 
chain growth polymerization. It is also a diffusion- 
controlled reaction which exhibits' gel effects and 

i t f l i  = [ 0 ~ n ,  I I + [bi ' . .b,,-11 I I I (12)glass effects near the high conversio&tage of batch. 

L 1 utf-1 1 J 

Fkom a practical standpoint, it is convenient 
to divide the total batch cycle time into several 
different phases and then apply the control algo- 
rithm a t  the beginning of each phase. In addi- 
tion, the dimension of control input can be reduced 
through some appropriate parameterization. That 
is, within each interval, the input trajectory may 
be parameterized with only a few parameters. 

2.4 Data-based Qual i ty  Control 
Having developed the on-line quality predic- 

tion, the future inputs calculation can now be for- 

In this.study, the model generated by Seth and 
Gupta [9] is selected for the simulation. This model 
overcomes some important shortcomings of other 
models that previously existed and has already 
been tested and found to be suitable for an industry 
use. 

Solution polymerization with initial volume 
fraction of solvent f," = 0.3 is chosen for this 
study. The nominal operation is isothermal with 
reaction temperature, T = 7OoC. The relevant 
product quality in this process is characterized by 
the weight average molecular weight (Mw) and 
the polydispersity (Pd), which are critical for end- 
use polymer characteristics. The two major feed 
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disturbances are initiator charge fluctuation and 
monomer impurity. The initiator charge fluctua- 
tion is assumed to be in the range of &lo%, while 
the monomer impurity is simulated as the existence 
of inhibitors. 

The reaction heat related information has been 
used to control batch polymerization reactor. One 
of the methods is using calorimetric state estimator 
to estimate the heat-release of reactor [8], which 
can be further used for control purposes. In this 
study, the cooling rate needed to maintain a con- 
stant temperature profile, is assumed to be mea- 
sured every minute and used for the prediction 
of end quality. When a disturbance occurs, the 
heat generated from the polymerization reaction 
changes and results in a deviation of the cooling 
rate profile from the nominal trajectory. This infor- 
mation was found to be strongly correlated with the 
deviation of the end-quality variables and therefore 
useful for predicting the end-quality variables for 
control purposes. 

In this paper, we also assumed that the reac- 
tion temperature was controlled perfectly through 
a low-level loop. Hence the reaction temperature 
was treated as an input variable that can be ma- 
nipulated for control purposes, albeit within some 
constraints. The batch cycle time (6  hours) was 
divided into 5 intervals, which begin at  0, 50, 100, 
150, and 250 minute marks respectively. The reac- 
tor temperature was assumed to  be held constant 
within each interval. The data-based control pro- 
cedure introduced earlier was used to calculate the 
reactor temperatures during these intervals. 

4 Results 

The very first step in applying the data-driven 
control procedure is the generation of data that can 
be used for the model-building. It is important to  
recognize that the prediction capabilities of data- 
based models are heavily dependent upon the na- 
ture of data supplied for building the model. The 
batch data should contain the effects of various dis- 
turbances as well as the potential input moves one 
may make for the purpose of control. This will 
allow the correlation (or the causal relationships) 
among the input moves, process output measure- 
ments, and final product quality to be captured 
in the model. In our simulation study, 60 batches 
of data were generated by randomly changing the 
initial charge and the reactor temperature values 

during each interval. 

The first objective of the simulation study was 
to assess the prediction capability of the proposed 
recursive method. For this, another 20 batches 
with randomly varying disturbances were simu- 
lated. Figure 1 shows the results for one of the 
20 test batches. Figures lc-d show the trajectories 
for the measured variable (cooling rate) and the 
manipulated variable (reactor temperature) respec- 
tively. The peaks in Figure IC indicates the effects 
of inputs (setpoint changes for the reaction temper- 
ature) at beginning of each control interval. Figure 
la-b give an indication of how the prediction from 
the recursive filter evolves throughout the batch 
as more and more measurements become available. 
As can be seen from the figures, the end-quality 
predictions eventually converge close to the actual 
values as more and more on-line measurements are 
taken in. 

Since an accurate prediction of the end-quality 
at an early stage of reaction is the key to  making 
the corrective adjustments needed to suppress the 
disturbance effects, the prediction capability was 
tested at various mid-points during a batch. Fig- 
ure 2 plots the predictions at the 100 minute mark 
for the same 20 batches. The predictions are very 
good. 

Since the recursive prediction adopted in this 
paper is based on on-line measurements, the accu- 
racy of measurements should certainly affect the 
prediction capability. Several levels of measure- 
ment noises were added to test the sensitivity of 
the prediction. One tested case with an extremely 
high level of noises is illustrated in Figure 3. In 
Figure 3, the noise seems so large that it is diffi- 
cult to discriminate the real signal (ie., the devi- 
ation from the nominal trajectory) from it. How- 
ever, the predictions for the 20 batches still follow 
the right trend. This demonstrates the robustness 
of the recursive method with respect to  measure- 
ment noises. The robustness is afforded by the use 
of the PCA method in constructing the correlation 
model. 

The second objective of this simulation study 
was to assess the performance of the quality con- 
trol strategy. At the beginning of each interval, 
future input parameters were calculated according 
to (13). To test the effectiveness of the control 
strategy, another 20 batches with randomly vary- 
ing disturbances were simulated. The comparison 
between the operation with the data-based control 
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Figure 1: Measurement / input profiles and recur- 
sive predictions of end qualities for a typi- 
cal batch 

Figure 2: Prediction results for Mw at t=100 minute 
for the 20 tested batches 

and the conventional isothermal operation is dis- 
played in Figure 4. It shows that much tighter 
quality control can be achieved with the data-based 
control approach. 
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