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ABSTRACT 

Within the chemical and process industries it is common to find 
plants suffering from the infrequent measurement of key process 
outputs due to sampling limitations. This contribution describes an 
‘integrated’ inferential predictive controller that can overcome 
measurement limitations while offering the benefits of predictive 
control. The results of a rigorous performance evaluation of the 
inferential predictive controller are described when applied to a 
non-linear simulation of a distillation column. A direct application 
of the inferential controller is considered against a cascaded 
implementation. The inferential controller is tuned to meet robust 
performance objectives. The results of the simulation studies are 
used to develop heuristics for the implementation of the inferential 
controller. It is found that no extra benefits are obtained through the 
use of a cascade implementation. 

INTRODUCTION 

The inability to measure key process variables at a rate suitable for 
on-line control is a problem common to many industrial processes. 
The instrumentation may not exist hence requiring off-line 
laboratory assay or analysers with long cycle times have to be 
employed. The penalty is that deviations from nominal operation 
may remain undetected for significant periods of time. Effort 
towards alleviating this problem has included the development of 
inferential estimators [ 1,2] with considerable success when applied 
to industrial situations [3,4]. Inferential estimators are reliant on the 
primary variable being related to other more easily measured 
secondary variables. The secondary outputs are used to infer a value 
of the primary variable at the more frequent sampling rate of the 
secondary variables. 

A natural progression of the work on inferential estimation is the 
development of an inferential controller. As inferential estimation 
is more justified in high performance applications, it follows that 
the corresponding use of modern predictive control techniques, such 
as Dynamic Matrix Control (DMC) [7] and Generalised Predictive 
Control (GPC) [SI, is more appropriate than conventional feedback 
control. It has previously been shown [5] how the inferential 
estimator, introduced by Guilandoust et a1 [l], can be synthesised 
into the Generalised Minimum Variance (GMV) control algorithm 
[6]. Initial results were encouraging, and the inferential GMV 
controller was shown to significantly out-perform a ‘standard’ 
GMV controller. 

This paper extends the work of Brunet-Manquat et a1 [ 5 ]  and 
develops a long range predictive controller with inferential 
estimation capabilities. Robust control concepts are used to select 
controller parameters. A non-linear simulation of a binary 
distillation column is used to evaluate the performance capabilities 

of the inferential predictive controller; when it is implemented 
‘directly’ and when it is implemented in a cascade strategy. 

INFERENTIAL PREDICTIVE CONTROL 

Inferential Estimation 

Following Guilandoust et a1 [l], the inferential estimator aims to 
provide an estimate of, y ( t )  = yo( t -  d ) ,  where y ( t )  is the 
measured value of the primary output at time t, y o ( t )  is the actual 
value of the primary output at time t, and d is the measurement 
delay as an integer multiple of the secondary sample time. The 
primary and secondary models are: 

j ( t  + d )  = h u ( t  - m - 1)+.. .+pnu(t - m - n + 1) + 

+ ~5,,-~ E( t - n - 2) 
G(t)=-aLG(t-l)- ...- a,,G(t- n)+ b,u(t- m-I)+ ... 
+ b,,u(t - m - n)  + kl&(t)+ ...+ k , , ~ ( t  - n + 1) 
where ~ ( t )  = v(t) - C ( t )  , u( t )  is the manipulated input, j ( t  + d )  
and C ( t )  are the respective estimates of the primary and secondary 
variable, ‘m’ is the smallest time delay in the state response to 
changes in u(t). The model coefficients can be identified using any 
suitable parameter estimation technique such as least-squares. 

Model for Inferential Predictive Controller Design 

Equations (1 )  and (2) may be rewritten as: 

cr,C( tit)+ ...+cx,,_, i ( t  - n + llt- n + 1 ) +  61&(t)+... (1) 

(2) 

j ( t  + d )  = pu(t - 1) + &(t) + S&(t) 
AC(t) = Bu(t - 1) + C&(t) 

A ’ j ( t  +U!) = B’u(t - 1) + C‘&(t) 

(3) 

(4) 

(5) 

Substituting for ;(t) in Eqn. (3) using Eqn. (4) gives: 

where, 
A‘= A ,  B =  A P + a B ,  C‘= AG+aC 

Equation ( 5 )  has an ARMAX type model structure and can therefore 
be used to design a predictive controller with inferential capabilities. 
The use of a single model for both the controller and inferential 
estimator has a number of advantages including reduced 
computational overheads and reduced scope for process-model 
mismatch [5]. It also alleviates the problems of ‘interactions’ 
between separate estimator and controller if both were to be 
implemented adaptively. 

Inferential Predictive Control Law 

Using Eqn. ( 5 )  and the cost function, 
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N 2  'Vll 
min J = x [ y ( t  + j ) -  r(t  + j )I2 + l x [ A u ( t  + j -  I)]' 

,&NI j=I 

and applying the GPC design procedure [SI leads to the following 
control law: 

U, = (GTG + AI)-'[GT(r - f )  + h_,] (7) 

where: r = [r(t + I),r(t + 2) ,  ..., r( t  + N2)]' 
f = [ f ( t  + I ) , f ( t  + 2), ... f ( t  + N2)I7 

f ( t  + j )  = F,y(t)+ +(f - 1) 

Here ut-l is a vector of the previously calculated controls, f is the 
free response, and r is a vector of the future set points. The 
prediction error acts to remove any offset due to quantifiable 
process-model mismatch. G is analogous to the original version of 
GPC and h is a weighting factor that penalises excessive changes in 
the manipulated input. N I  and N2 are the minimum and maximum 
prediction horizons respectively, while Nu is the control horizon. As 
only the first calculated control move is implemented, the control 
law (Eqn. 7) becomes, 

u( t )  = h(r - f ) +  glu,-l (8) 

where h = first row of (GTG + lI ) - 'GT 

g = first row of ( G ~ G  + aI)-I 

ROBUSTNESS ISSUES AND CONTROLLER TUNING 

The inferential process model, Eqn. (5 ) ,  may be subject to errors 
and this must be taken into account when tuning the inferential 
predictive controller. Here, robust control philosophies are used to 
develop an appropriate controller parameter selection procedure. 
The aim is to design a controller capable of maintaining satisfactory 
system performance in the presence of a prespecified degree of 
model uncertainty. 

Uncertainty Description 

The uncertainty description is used to define a 'family' of plants 
around the nominal model. If the system is stable for all plants, p ,  
then it is said to be robustly stable. Mathematically the family of 
plants, II, can be defined as: 

(9) 

wherep(iw) and p"(iw) are the actual and nominal process models 

respectively; Fa(w) is the maximum additive uncertainty for a 

given frequency, w. lm(co) is the corresponding maximum 
multiplicative uncertainty. 

With digital control systems, the effect of sampling upon the system 
uncertainty has to be considered. Morari and Zafirou [9] have 
shown that the uncertainty bounds for the discrete time model are 
related to the continuous process according to, 

and 

where T is the sample time, os the sampling frequency, h,(s) 
represents a zero-order hold and u(s) an anti-aliasing filter. The 
superscript * denotes a discrete quantity. The inter-sample 
behaviour is modelled as a zero-order hold. This is satisfactory for 
chemical process systems where the disturbances are usually of low 
frequency, characterised by infrequently occurring random changes 
of at least the period of the process time constant [10,11]. As a 
consequence of Eqn. ( IO) ,  any plant, p(s), belonging to the 
continuous time set of plants, n, also belongs to n*. The 
uncertainty is calculated from the nominal model by assuming an 
error in the phase and amplitude ratio. Calculation of the additive 
uncertainty is relatively straightforward once the uncertainty bound 
has been established. 

Sensitivity and Complementary Sensitivity Functions 

Consider the sampled data two-degree-of-freedom Internal Model 
Control (IMC) strategy shown in Fig. 1 [9].  Solid lines represent 
discrete data flow while the dotted lines represent continuous data 
flow. As will be shown later, the inferential predictive controller can 
also be represented in this form. 

I r. 
d l  

I 

Figure I .  Two-degree-of-freedom IMC feedback structure 

The closed loop system can be represented in terms of the filtered 
process output, y; , where p r  = p.  yand p d y  = p d .  y . 

* * *  
Defining e = Y -yu , 

Assuming that in the region of interest, the nominal plant, 

F ; ( z - ' ) ,  is an accurate representation of the real process, 

p ; ( z - ' ) ,  i.e. p y ( z  * -1  )=$(z- ') ,  then, 
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e' = (l-p"; (z-' )q,(z-'))r' -pd; (z-' (l-F;(z-' )qd(z-'))d (14) 

For servo and regulatory control respectively, the sensitivity 

functions, E; and E : ,  and complementary sensitivity functions, 

7; and 7; , are defined as, 

(15) 
Er * =,=l-p;(z-l)q,(z-') e' 

r 

7; =1-.; =p";(z-')g,(z-') (16) 

7' I =I-&; = I -  P d ;  ( z - ' ) ( l -  p"; (z- ' )qd(z- ' ) )  

I.&dl+ 17;q < 1 (19) 

(18) 

To achieve robust performance, the controller must be tuned 
appropriately. For disturbance rejection the criterion is: 

Under servo control the prefilter, q,(z- ' ) ,  does not feature in the 
feedback path and has no effect on stability. It can therefore be 
designed exclusively for robust tracking performance giving: 

Here wd and w, are frequency dependant performance weights 
specified by the user. 

Directly Applied Inferential Predictive Control 

Predictive controllers can be represented in two-degree-of freedom 
feedback form [12], as shown in Fig. 2. 

Nominal - - - 
Process 

I 

Figure 2. Two-degree-of-freedom feedback controller. 

The polynomials R and S are selected for disturbance rejection 
while the pre-filter, Q is designed for setpoint tracking. The closed 
loop expression for this system is: 

Expansion of the predictive control law (Eqn.7) and substitution 
into the nominal plant model, 

A"y( t )  = z-'B"u(t)+ C"&(t) (22) 

where 
expression for the predictive controller, 

denotes the true plant parameters, yields the closed-loop 

z - ' B C y h  

Comparison of terms between Eqns. (21) and (23)  yields the 
polynomials for the predictive controller, with 

Q = C x h j ,  R=C-z- 'Cg;l+z- 'zhi6i  , S = x h j F i  (24) 

The sampled data IMC control terms are found by comparison of 
Eqns. (12) and (23): 

Cascade Inferential Predictive Control 

Industrial control configurations often adopt the cascade control 
structure. This is particularly common in distillation column control 
where typically, a product composition is measured and fed to a 
composition controller whose output serves as the setpoint of a tray 
temperature controller. The scheme is most effective where the 
disturbance affects both the primary and secondary variables in a 
similar manner. Rejecting the disturbance from the secondary loop 
is not always sufficient to bring the primary variable back to 
setpoint. Control performance suffers, due to the long cycle time of 
the analyser, until the secondary setpoint can be adjusted 
accordingly. This can be overcome if the predictive inferential 
controller is used in the outer loop of the cascade, because of the 
faster feedback of information, as illustrated in Fig. 3. 

Figure 3. Inferential controller in cascade control framework. 

The closed-loop expression for this control configuration is, 

a"C"A, - z-'B C 

A, A" + z-'S, Bg 
+ &Z(t)  

where A, = A" + Z-' Kc B o ,  Bg = a"Bo + ,"Po, C, = 

A"K,S A"K,Q 
s, =- .Q, =-j- R 
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The polynomials R, S and Tare as defined previously. Similarly, the 
IMC filters are as defined in Eqn. (25) .  

Tuning of the Inferential Predictive Controllers 

The flexibility of predictive controllers is due, in part, to the number 
of available tuning parameters. To reduce the complexity of the 
tuning problem, it is common practice for some default values to be 
attributed. For a stabilisable, detectable plant, Clarke et a1 [8] 
recommends default settings of Nu = 1, NI = 1 ,  N2 = 10, R=O. 
Where process time delay is significant, a prediction horizon of 10 
is not always satisfactory. Lee et al [13] present a simple result, 
showing that a prediction horizon, N2 = 10 -I- m, where m is the 
process time delay, gives a closed-loop with identical poles to the 
delay free process with a prediction horizon, N2 = 10. This latter 
approach is used. The control weighting, 1, is used to penalise 
changes in the manipulated variable, de-gaining the controller and 
ensuring practicable application. It is common practice for the 
identified process noise model, C’(Z-~) ,  to be replaced by a user 
defined polynomial. This design polynomial, T(z-I), can be used to 
tailor the response of the system to disturbances [8]. It is especially 
useful in the regulatory robust design procedure as it has no effect 
upon the servo response of the system. The controller can therefore 
be designed independently for servo and regulatory control. The 
procedure is summarised below: 

H 0050- 

6 0045.. 

1 .  
2.  

3 .  

4. 

5.  

6 .  

7. 

8. 

I I- , - -  .;. -” 

Y -  

Identify nominal plant model 
Design predictive controller based upon nominal plant and 
default tuning parameters 
Decompose the controller into a two-degree-of-freedom IMC 
structure 
Define the uncertainty bounds, iz ( w )  

Calculate qd(’-l) and qr(z-’)  from Eqns. (24) and (25)  

Calculate the sensitivity and complementary sensitivity 
functions for both regulatory and servo control (Eqns. 15 to 18) 
Check if Eqn. (20) is satisfied. If not, alter control weighting, A, 
and return to step 2.  
Check if Eqn. (19) is satisfied. If not, alter design polynomial, 
T, and return to step 2.  

APPLICATIONS TO A NON-LINEAR DISTILLATION 
COLUMN MODEL 

The inferential predictive controllers were applied to a detailed non- 
linear simulation of the 8-tray pilot scale column at the University 
of Alberta, Canada. The column, shown schematically in Fig. 4, 
separates a 50/50 wt % mixture of methanol and water at a feed rate 
of 1.08 kg/min. In normal operation, reflux and steam flows are 
manipulated to control the top and bottom compositions to 95 wt % 
methanol and 5 wt % methanol, respectively. Bottoms composition 
is measured on-line via a gas chromatograph, giving a new 
measurement every 4 minutes. All other variables (e.g. pressures, 
flows, temperatures) are sampled at 30 second intervals. This model 
has been used for the analysis of advanced control schemes by a 
number of workers [5,14]. The objective here is to regulate bottoms 
composition when a step disturbance, lasting for approximately 3 
hours, is introduced in the feed flowrate. 

The feed flowrate affects column temperatures as well as product 
compositions. Both the temperatures and product composition also 
exhibit direction dependent non-linearities. The secondary variable 
used for inferential predictive control is the temperature on tray 3, 

which has significant differences in dynamics to the bottom 
composition [I]. 

...... 

...... P 
Temperature 

Tray 3 

...... 

.....- 

Analyser & 3 min cycle 

Steam flow 
i3.8 9.5 (steady 

Figure 4. Schematic ofpilot-scale distillation column 

Employing second order estimator models, both direct and cascade 
inferential predictive controllers were designed for 20% error in the 
process parameters. For the directly applied case, the settings were 
NI = 1,  N2 = 10, Nu = 1, R = 1. The settings for the cascade 
implementation were Kc = 2, N1 = 1 ,  N2 = IO, Nu = 10, R = 0.5. In 
both cases, offset rejection was enhanced by feeding back a filtered 
error as a setpoint trim. 

Both inferential control strategies provided significantly better 
control (Figs. 5 and 6) than that achieved by a standard GPC (results 
not shown) as it is still limited by the large analyser delay on the 
primary variable. From Fig. 5, it can be seen that both control 
schemes offered comparable performance with both the size of the 
perturbations on the process output, and the settling times, being 
similar. 

0.060 

2 0.055 $ 

Finure 5. Comparison of direct and cascade schemes for regulatory 
composition control. 

14.05 - - - Wrect implementation 
. . . . . .Cascade implementation 3 1400 

8 1395 
E 13.90 
2 13.85 13.80 \L 

2.00 3.00 4.00 5.00 6.00 7.00 8.00 
Time (hours) 

Finure 6. Manipulated variables for direct and cascade controllers. 

Further simulation studies concentrated on evaluating the 
effectiveness of the robust tuning methodology for both 
implementations of the controller. In both cases, the control 
weighting was reduced by 20% to give control weightings of 0.8 
and 0.4 respectively for the direct and cascade implementations. If 
the process model is accurate, control performance should be 
improved. This cannot be guaranteed in the presence of process- 
model mismatch, as in the case of this non-linear simulation. The 
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feed disturbances were the same as that used in the previous 
example and the results are presented in Figs. 7 and 8. 

G- ’ 0.040 ] - . - ~ + . . ~ + - - ~ - .  -+ 
2.00 3.00 4.00 5.00 6.00 7.00 6.00 

Time (hours) 

Finure 7. Comparison of non-robust inferential predictive 
controllers. 

14.05 
P 14.00 f 
m I.)nc 

2.00 3.00 4.00 5.00 6.00 7.00 800 

Time (hours) 

Figure 8. Manipulated variables for non-robust inferential 
predictive controllers. 

Figure 7 clearly demonstrates degraded control performances in 
both the direct and cascade implementations. Larger excursions 
from the setpoint and more oscillatory responses with longer 
settling times are observed. Again, both implementations offered 
similar disturbance rejection properties. 

The direct and cascade implementations of the inferential predictive 
controllers were considered for servo control and the results can be 
seen in Figs. 9 and 10. 

0.060 
0.056 

e 0.056 
0.052 

H 0.054 

-t- -4 ” 0.0484- , Y  

2.00 3.00 4.00 5.00 600 700 8.00 
Time (hours) 

Figure 9. Comparison of direct and cascade schemes for servo 
control 

- 13.90 
yImplementat lon-1 

E ;g;+ ;U- 

. . . . . .Cascade implementation pk. ; e E;--, 13.70 e- ’ -!?- 
i -----I 

2.00 300 4.00 5.W 6.00 7.00 8.00 
Time (hours) 

Fizure IO. Manipulated variables for servo control 

It is clear from Fig. 10 that the direct implementation of the 
controller offers superior servo control, exhibiting lower overshoot 
and with no offset. The manipulated variable for the cascade case is 
far more active than for the direct controller. The outer loop with 
the inferential predictive controller adjusts the temperature setpoint 
to a level commensurate with the desired composition. The inner 
loop then acts to bring the tray temperature to setpoint. This delay 
in reaction, between the inner loop and the inferential predictive 

controller, is postulated as the reason why the direct controller 
offers superior servo performance. 

CONCLUSIONS 

This paper has shown how an integrated approach to inferential 
predictive controller design can be developed. Two inferential 
control configurations were investigated; direct application of the 
inferential predictive control algorithm and using the predictive 
controller in the outer loop of a parallel cascade scheme. Both 
implementation offer comparative regulation of the bottoms 
composition of the distillation column under study, while the direct 
implementation offered a better servo response. The tuneable 
parameters of the predictive controllers were selected using a 
procedure based upon robust control principles. For both cases, the 
robust design procedure resulted in better performance compared to 
a more aggressively tuned regime. 
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