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Abstract 
Multivariable inferential feedback control of distillation 
compositions using principal component regression (PCR) 
models is presented in this paper. Both static and dynamic 
models are studied. PCR model based software sensors are 
developed from process operational data, so that the top and 
bottom product compositions can be estimated from multi- 
tray temperature measurements. The problems of co- 
linearity in tray temperature measurements are addressed by 
using PCR. Static estimation bias and the resulting static 
control off-sets are eliminated through mean updating of 
process measurements. Application to a simulated 
methanol-water distillation column demonstrates the 
advantage of dynamic PCR model based inferential 
feedback control. It is shown that dynamic PCR model 
based inferential estimations are more robust to process 
operating condition variations than those based on a static 
PCR model. 

Keywords: Software sensors, inferential control, principal 
component regression, distillation column control. 

1. Introduction 
There are many processes in chemical industry where the 
primary variables to be controlled are difficult to measure 
or cannot be measured fast enough. For example, in the 
control of product compositions in distillation columns 
composition analysers such as gas chrotomography usually 
possess significant time lags typically between 10 to 20 
minutes (Mejdell and Skogestad, 1991). In such cases, 
effective control of product composition cannot be achieved 
by direct feedback control based on the much delayed 
composition measurements. To address this problem, 
inferential control can be used (Brosilow and Joseph, 1978; 
Guilandoust et al.,  1988; Budman et al.,  1992; Lee and 
Morari, 1992). In inferential control, the difficult to 
measure controlled variables are estimated from some easy 
to measure process variables and then used in feedback 
control. 

The primary variables to be controlled in a distillation 
column are the top and bottom product compositions. 
Composition analysers possess quite long time delays and, 
furthermore, they are usually expensive and difficult to 
maintain. Therefore, in distillation composition control, it is 
a usual practice to use certain tray temperatures to represent 
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product compositions and control these tray temperatures. 
However, using a single tray temperature to represent 
product composition has some drawbacks (Mejdell and 
Skogestad, 1991), such as the relationship between tray 
temperature and product composition depends on the feed 
composition and the product composition at the other end of 
the column and column pressure variations can affect tray 
temperatures. To overcome these problems, multiple tray 
temperatures should be utilised. Due to the strong 
correlation among tray temperature measurements, multiple 
linear regression using the ordinary least square method is 
usually inappropriate and the principal component 
regression (PCR) or partial least squares (PLS) methods 
should be utilised (Kaspar and Ray, 1992; Kresta er al . ,  
1991). Zhang (2001) reported using PCR and PLS models 
in the inferential feedback control of distillation 
compositions and presented a technique for eliminating 
static estimation and control off-sets through mean 
updating. The PCR and PLS models consider in (Zhang, 
2001) are of static form. In this paper, it is shown that 
inferential estimation and control performance can be 
improved by using dynamic PCR models. It is shown that a 
dynamic PCR model is more robust to process operating 
condition variations than a static PCR model. 

This paper is presented in four sections. Section 2 presents 
static and dynamic PCR model based software sensors. 
Section 3 presents inferential feedback control of 
distillation compositions based on these software sensors. 
Finally, Section 4 contains some conclusions of this study. 

2. PCR model based software sensor 
The distillation column studied in this paper is a 
comprehensive nonlinear simulation of a methanol-water 
separation column. A nonlinear tray by tray dynamic model 
has been developed using mass and energy balances. This 
simulation has been validated against pilot plant tests and is 
well known for its use in control system performance 
studies (Tham et al.,  1991a; 1991b). The following 
assumptions are imposed: negligible vapour holdup, perfect 
mixing in each stage and constant liquid holdup. The 
nominal operation data for this column are listed in Table 1. 

In this study the nominal operating point considered is the 
top composition at 95% and the bottom composition at 5%. 
To generate data for building PCR and PLS inferential 
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estimation models, random perturbations of f15% were 
added to the feed rate and the feed composition. 
Measurement noises of the distribution N(O°C, 0.1"C) were 
added to the tray temperature measurements. Figure 1 
shows the top and bottom product compositions while 
Figure 2 shows the tray temperatures. The sampling time 
used is I minute. It can be seen from Figure 2 that the tray 
temperatures are highly correlated. 

Feed tray 

training data set (samples 1 to 200) and a testing data set 
(samples 201 to 390). PCR models with different principal 
components were developed on the training data and tested 
on the testing data. The number of principal components 
retained in the model is determined based on the minimum 
sum of squared errors (SSE) on the testing data. 

5 

1 01 , I '  

Feed flow rate 

Table 1. Nominal distillation column operation data 

18.23 g/s 
Top composition 
Bottom Composition 
Top product rate 
Bottom product rate 

95 % methanol 
5 % methanol 

9.13 g/s 
9.1 g/s 

Figure 2. Tray temperatures 
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Figure 1. Top and bottom product compositions 

2.1 Building static PCR model 
The static model here refers to the model where the 
compositions at time t are estimated from tray temperatures 
at time t only. The model is of the form: 

Y O )  = elTl(t> + 027,2( t> + ' .  . + ~ l O T I O ( ~ >  (1) 

where y represents the product compositions, TI to TI0 

represent, respectively, the temperatures of trays 1 to 10, el 
to Ol0 are model parameters, and t i s  the discrete time. 

The data were scaled to zero mean and unit variance and the 
reason for this is to allow data with different ranges to be 
used within the same model. Next, data is divided into a 

MSE of testing data for the Top Composition 

2 o o ~  

k4 100 .111.11.....11 50 1 2  3 4 5 6 7 8 9 10 

No.of Principal components 

MSE of testing data for the Bottom Composition :;; 100 

50 

0 1 2  3 4 5 6 7 8 9 10 

No.01 Principal components 

Figure 3. SSE on testing data for PCR static models 

Figure 3 shows the SSE of PCR static models with different 
numbers of principal components on the testing data. It can 
be seen that 7 principal components give the best 
performance for the top composition and 9 principal 
components give the best performance for the bottom 
composition. Thus the appropriate numbers of principal 
components for the top and bottom composition models 
were determined as 7 and 9 respectively, which give, 
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respectively, the SSE on the testing data as 36.5321 and 
11.2941. These SSE values are based on the scaled data. 

orders I 

2.2 Building dynamic PCR models 
The inferential estimation accuracy could be further 
improved if a dynamic PCR model is developed. Here first 
order, second order, and third order dynamic PCR models 
were developed. As an example, the first order dynamic 
PCR model is of the following form: 

Y ( t )  = ~1.17-dt) + f3L27-dt-1) + 02,17-2(t) + 
e2,2T2(t-1> + ..' + ~10,1TlO(t) + ~lo,2~1o(t-l) ( 2 )  

I components 

Data scaling and data partition is the same as in developing 
the static PCR model. The appropriate numbers of principal 
components were once again determined by the least SSE 
on the testing data. Table 2 shows the numbers of principal 
components and the SSE on the testing data of these 
dynamic PCR models. Once again the SSE values are based 
on the scaled data. 

2 

Table 2. Number of principal components and SSE of 
different dynamic PCR models 

Bottom comp. I 1.0965 I 18 
Topcomp. I 3.5377 I 16 

I Model I I SSE I No. of principal 

3 
Bottomcomp. I 0.8340 I 23 
Topcomp. I 3.0147 I 13 

I I BottomcomD. I 0.8663 I 37 I 

It can be seen that the dynamic PCR models quite 
significantly improve the estimation accuracy over the static 
PCR model, especially the second order and third order 
models. The differences between the second order and third 
order models are not significant. Thus the second order 
dynamic PCR model can be used. 

Compositions 1 Controller 1 , F l - ,  
t -  Tray temp. I 

Son-sensor 0 
Figure 4. Inferential feedback control structure 

3. Inferential feedback control of distillation 
compositions based on PCR models 
The software sensor based inferential feedback control 
structure is shown in Figure 4. The reflux rate (L) and 

steam flowrate to the reboiler (V) are the manipulated 
variables for composition control. The tray temperatures are 
fed to the PCR software sensor and the estimated 
compositions are used in feedback control. The feedback 
controller can be of any form such as a multi-loop 
controller or a multivariable controller. In this study, a 
multi-loop PI controller was used. 
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Figure 5. Responses under the static PCR model based 
controller 

Four inferential feedback control schemes with the four 
software sensors (static and the first to the third order 
dynamic PCR models) were developed. For the purpose of 
comparison, a tray temperature based distillation 
composition controller and a composition analyser based 
composition controller were also developed. In the tray 
temperature based composition control, a single tray 
temperature was used to represent the product composition. 
Through analysing the data shown in Figures 1 and 2,  it was 
found that temperature of the 8* tray (from the column 
bottom) has the largest correlation coefficient (-0.9 1) with 
the top product composition while temperature of the 2nd 
tray has the largest correlation coefficient (-0.93) with the 
bottom product composition. Therefore, temperatures of the 
2nd and the Sth trays were controlled to indirectly control top 
and bottom product compositions respectively. At the 
nominal operating point (top composition at 95% and 
bottom composition at 5%), temperatures at the 2"d and the 
8" trays are 86.6OC and 7OoC respectively. Therefore, the 
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setpoints for tray 2 and 8 temperatures were set as 86.6"C 
and 7OoC respectively. In the composition analyser based 
composition control, a 5 min measurement lag was 
assumed. For all the cases, multi-loop PI controllers were 
used and tuned using the BLT tuning method (Luyben, 
1986). 

Control schemes 

958  t 

SSE in Top SSE in Bottom 
Comu. Comu. 

-- Aolual Bollom Composition & . Bottom Compoailion lrom Solfuare senam 
8 

static PCR model 
1" order dynamic 

PCR model 
2nd order dynamic 

PCR model 
3rd order dynamic 

PCR model 
Tray temperature 

control 
Composition analyser 

control 

7 '  I 
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Time ( mm ) 

Figure 6. Responses under the 2nd order dynamic PCR 
model based controller 

23.1681 274.8978 I 
22.1829 223.1 17 1 

21.8111 22 1.7452 

21.3367 220.9866 

25.1967 373.9638 

35.8802 661.761 3 

To study the performance of these control schemes, the 
following disturbances were added to the simulated column. 
The feed rate was increased by 15% at the 51" minutes, the 

feed composition was increased by 15% at the 251" 
minutes, the feed rate was decreased by 15% at the 451" 
minutes, and finally the feed composition was decreased by 
15% at the 651'' minutes. Table 3 shows the SSE of 
different control schemes for the above sequence of 
disturbances. It can be seen from Table 3 that all the PCR 
software sensors based inferential control schemes gave 
better performance than temperature control and 
composition analyser based control. Among the inferential 
feedback control schemes, the dynamic PCR model based 
schemes give better performance than the static PCR model 
based scheme, particular the 2nd and 3rd order dynamic PCR 
model based schemes. 

Figures 5 and 6 show, respectively, the responses of the 
static PCR model and the 2nd order dynamic PCR model 
based schemes under the above sequence of disturbances. In 
these figures, the dashed lines represent the actual 
"measured" responses of compositions and the solid lines 
represent the corresponding model predictions. Note that 
there is a 5 min time delay in the actual composition 
responses. It can be seen that the 2nd order dynamic PCR 
model gives more accurate estimations that the static model. 
The static estimation errors and the related static control 
off-sets from the 2nd order dynamic PCR model are smaller 
than those from the static model, especially in the top 
product composition. 

- -Actua l  TOP Composllion 6 .Top  Composition lrom Sonware senaor 
971.- 

Time ( m m  ) 

(b) with mean updating 
Figure 7. Responses of top composition of the static PCR 
model based inferential feedback controller 
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(a) without mean updating 

A problem in inferential control is that static control off-sets 
often exist due to static estimation errors. Zhang (2001) 
proposes using mean updating to eliminate static estimation 
and control off-sets. In this strategy, the process variable 
means are updated once a new steady state operating 
condition is detected. In such a way, the static estimation 
errors due to the operating condition drift can be eliminated. 
This strategy of mean updating is also used here. However, 
the studies of this paper show that the dynamic PCR 
inferential estimation models are more robust to process 
operating condition variations than the static PCR 
inferential estimation model. 

- .Actual Bottom Composition a . Bottom Composition from Sonware a m s o r  
8 . 5 , .  . . . . . . . .  I 

- -  Actual Bottom c o r n p o s ~ t ~ o n  a . aottorn C o m p o s i t i o n  lrom Sof tware  sensor 
6 5  

0 100 200 300 400 500 600 700 800 900 1000 
Time ( m m  ) 

(b) with mean updating 
Figure 8. Responses of bottom composition of the static 
PCR model based inferential feedback controller 
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(b) with mean updating 
Figure 9. Responses of top composition of the 2"d order 
PCR model based inferential feedback controller 
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(b) with mean updating 

0 

Figure 10. Responses of bottom- composition of the 2"d 
order PCR model based inferential feedback controller 

To investigate the performance of the inferential feedback 
control schemes under operating condition variations, the 
setpoints for the top and bottom product compositions were 
changed to 96% and 4% respectively, followed by feed rate 
and feed composition disturbances. Figures 7 and 8 shows, 
respectively, the top and bottom composition responses of 
the static PCR model based inferential feedback controller. 
Figures 9 and 10 shows, respectively, the top and bottom 
composition responses of the 2nd order dynamic PCR model 
based inferential feedback controller. In these figures, the 
setpoints for the top and bottom compositions were changed 
to 96% and 4% respectively at the 51'' minutes and a 15% 
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increase in feed rate was introduced at the 35Ist minutes, 
followed by a 15% increase in feed composition at the 65lSt 
minutes. Through mean updating, steady state model 
estimation bias and the resulting control off-sets have been 
eliminated. However, it can be seen that the static PCR 
model has much larger estimation off-sets than the dynamic 
PCR model when the operating condition is changed. This 
demonstrates that the dynamic PCR model is more robust to 
process operating condition variations. 

Table 4. SSE of different inferential control schemes 

Table 4 gives the SSE of different control schemes under 
the above setpoint changes and disturbances. It can be seen 
from Table 4 that the static PCR model based inferential 
feedback control scheme has much larger errors that the 
dynamic PCR model based inferential feedback control 
schemes. This indicates that the dynamic PCR models are 
more robust to operating condition variations than the static 
PCR model. 

5. Conclusions 
PCR ,static and dynamic models for distillation 
compositions are developed and used in inferential 
feedback control. It is shown that the PCR software sensor 
based composition control is superior to single tray 
temperature control and composition analyser based 
feedback control where substantial measurement delay 
exists. By using the PCR software sensors, substantial 
measurement delays can be eliminated and, hence, the close 
loop control performance is improved. By utilising multiple 
tray temperatures, enhanced correlation between tray 
temperatures and the top and bottom compositions can be 
achieved. Studies in this paper also show that the dynamic 
PCR models give more accurate estimations and are more 
robust to process operating condition variations than the 

static PCR model. Applications to a simulated methanol- 
water separation column demonstrate the effectiveness of 
the control strategy. 
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