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Abstract: An adaptive inferential algorithm is 
developed for estimation and control of multirate 
systems. The output y is measured J times slower 
than the secondary process output v and the input 
U, but an output estimate ye is produced at each 
sampling interval of v and U. Compared with pre- 
vious work on multirate inferential systems, the 
proposed algorithm has a more formal theoretical 
basis. For example, the output y is related to the 
secondary output U not only through external sto- 
chastic disturbances but also through the internal 
system structure. Convergence properties are for- 
mally proven for the case of zero external stochas- 
tic disturbances, and a simplified algorithm is 
proposed for practical applications. Simulated 
results illustrate the convergence properties of the 
algorithm and the improvement obtained in 
simple feedback control systems. 

1 Introduction 

This paper combines some of the concepts used in multi- 
rate output estimation [ S ,  6, 91 where the output is 
sampled J times slower than the input with those of infer- 
ential control, e.g. Reference 8, where a secondary output 
is used to improve the estimate of the primary-output 
values. The resulting multirate adaptive inferential esti- 
mation and control system is shown in Fig. 1. The 
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Fig. 1 Multirate inferential estimation and control system 

primary-process output At) is sampled with a period JT 
while the input u(t) and secondary output v(t) are 
sampled at the desired control interval T .  These measure- 
ments are sent in parallel to a parameter-identification 
algorithm and an output-estimation algorithm. The 
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output estimates y,(t) are produced every sampling inter- 
val T ,  and can be used as shown in Fig. 1 as the basis for 
control. If ye is a good estimate of y, performance should 
improve because the control action can be implemented 
with period T rather than JT. 

The estimation and control system shown in Fig. 1 
was first proposed by Guilandoust et al. [3] who pro- 
posed two approaches: state space and input-output. 
However, their state-space approach requires that the 
process be completely observable from the secondary 
output v(t). This requirement is severely restrictive since 
in most cases the dynamic modes of the primary output 
At) are not all included in the dynamic modes of u(t). 
Their input-output approach does not require this obser- 
vability assumption. It directly assumes that the process 
has two input-output models, one for y( t )  against U([), 
another for v(t )  against u(t). However, the formulation 
requires that the same white-noise term be present in 
each of the two models to relate At) with v(t) and to 
obtain the working equation of the algorithm. This 
approach does not adequately reflect the link between y 
and v,  e.g. the link is only via the external white-noise 
disturbance and if this disturbance vanished then there 
would be no theoretical basis for the working equation. 
Furthermore, it is difficult to interpret the physical 
meaning of the working equation, e.g. the relationship 
between the order of the polynomials in the working 
equation and the characteristics of the actual process is 
not clearly defined. 

This paper formulates the working equation based on 
the framework of linear models [lo]. The working equa- 
tion defines a more fundamental, inferential relationship 
from U to y via the internal system structure. The pro- 
posed approach avoids the need for the limiting assump- 
tions made by Guilandoust et al. [3]; quantitatively 
defines the relationship between the working equation 
and the original process model plus the external dis- 
turbances; permits formal proof of the output- 
convergence properties; and provides a solid theoretical 
background for extending the result to multi-input/multi- 
output cases. 

When J ,  i.e. the output sampling interval, is increased, 
the number of parameters to be identified increases pro- 
portionally. For cases when the number of estimated 
parameters must be reduced, a simplified algorithm is 
proposed which works well in simulations but lacks a 
formal proof of convergence. 

2 Models for multirate inferential estimation 

In the following discussion, models are derived first for 
multirate systems without external disturbances and then 
for systems with deterministic and/or stochastic dis- 
turbances. It is assumed that the process shown in Fig. 1 
is completely observable from u(t)  plus At), which is much 
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less restrictive than assuming that it is completely obser- 
vable from u(t) alone [3]. The process is of order n with 
an observability index nu from v(t). To simplify the nota- 
tion, it is assumed that the input sampling interval T = l 
and t is also used to indicate discrete time. 

2.1 Case 1 : no disturbances 
By the observability assumption, the system can be rep- 
resented as [lo] 

x(t + 1) = 

LO ... o -a ,  

0 ... 0 -nl  

0 ... 
0 ... 0 -Cny+ l  

I " y -  1 f 0 --I - a" 

where 

A x q - J )  = 1 + aJ,q-J 
+ a J 2 q - 2 J  + ... + a J n y q - " y J  (11) 

(12) 

+ C J 2 q - 2 + . . .  + c , , q - m  (13) 

B J ( q - ' ) =  b j1q- l  + b j ~ q - ~  " '  + bj,q-" 

cJ(q-l) = cJO + CJ1q-l 

and m = J x ny. 
The working equation (eqn. 10) can also be derived 

directly from the original continuous model of the 
process with a discretised input [SI. 

The stability property of AJ(q-J )  follows that of 
A(q-'). If the parameters of A(q-')  are real, so are those 
of A J(q - J) .  

2.2 Case 2: deterministic and stochastic disturbances 
If the dynamic modes of the deterministic disturbances 
do not result in pole-zero cancellation with the dynamic 
modes of the process, the composite system, i.e. the 
process system plus deterministic disturbances, can be 
represented by 

0 " '  0 -21 

0 " .  0 --CO" 
0 " '  0 -7C,,+t !1 I , , - ,  

!4(t) + 

where the augmented state variable x includes the 
dynamics of deterministic disturbances. The order of the 
composite system (eqn. 14) is greater than or equal to the 
order of the process but is still represented by n. The sto- 
chastic disturbances w(~), q,(t) and qy(t)  are assumed to be 
white Gaussian sequences with finite variances. 

As in the zero-disturbance case, the input-output 
relationship between u(t), w(t), v(t) and At) can be 
obtained as follows: 

A(q-')Cy(t) - M t )  + h ~ , ( t )  - qy(t)l 

= B(q-')u(t) + C(q-')v(t) + R(q-')E(t) (17) 

where A, B and C have the form of eqns. 5-7 and 

R(q-') = r . 4 - l  + rn-1q-2  + . . .  + rmo+lq-ny (18) 

Eqn. 17 can be rewritten (in a form similar to eqn. 9) as 

A(q-')y(t) = B(q-')u(t) + c(q-')v(t) + D(q-')z(t) (19) 
where z(t) is white and has a finite variance. In eqn. 19 
R(q-')G(t) - A(q-l)ht&) + A(q-')t],(t) has been replaced 
by D(q- I)z(t) using the representation and spectral factor- 
isation principle [l]. The polynomial D(q-') is defined by 

D(q-') = d o  + d,q-' + ... + d "Y q-"' (20) 
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Like eqn. 10, an equivalent form of eqn. 19 is 

A A K J ) f i t )  = BAq-')u(t) + C M 1 ) 4 t )  + DAq-')z(t) 

(21) 

DJ(q- ') = dJo + d J l q -  ' + dJ2 q + . + dJ,q-"' (22) 
If the deterministic disturbances result in pole-zero can- 
cellation with the process, the observability property of 
the composite system is lost. This situation, called input- 
zero blocking, is not discussed in this paper. 

The derivation of the working equation (eqn. 10 or 
21) is easily extended to multi-input/multi-output cases. 
For example, if there are several secondary measured 
variables rather than a single u(t) the same approach can 
he used to derive an appropriate working equation. On 
the other hand, if u(t) is not available, i.e. if nu = 0, the 
working equation naturally reduces to the single-input/ 
single output case treated by Lu and Fisher [ 5 ,  61. Note 
that it is almost impossible to make either the extension 
to the multi-input/multi-output case or the reduction to 
the single-input/single-output case when using the 
approach of Guilandust et al. [3]. 

3 Estimation algorithm 

3.1 Definitions 
The notation used to describe the process in eqns. 10 and 
21 can be simplified by dropping the J subscript. The 
inferential model of the process then becomes 

(23) 

where 

A(q-J)y( t )  = B(q-~' )u( t )  + C(q-')u(t) + D(q-')z(t)  
where 

A ( q - J )  = 1 + a l q - J  + a 2 q - 2 J  + ... + a , q - I J  

B(q-')  = b l q - '  + b z q - 2  + . . .  + b,q-" 
(24) 

(25) 
C ( q - ' ) = ~ o + c ~ q - '  + C 2 q - 2 + . ~ . + c , q - m  (26) 

D ( q - ' )  = d o  + d1q-'  + d 2 q - 2  + . . .  + d,,,q-"' 

m = J x n (27) 
Here n plays the role of ny in the previous section. It is 
further assumed that the original state-space representa- 
tion (eqns. 14-16) has all its eigenvalues inside the stable 
region. Let 

40 - I ) T  = [-fit - J ) ,  -fi t  - 2 4 ,  .. ., -fi t  - nJ),  

u(t - I), u(t - 2), ..., u(t - m). 

dt), u(t - l), . . . , u(t - m)] (28) 
and 

0; = [a , ,  . . ., a , ,  b,, . .., b,, co, c l , .  . ., c,l 

fi t)  = 4(t - l)TOo + D(q-')z(t)  

(29) 
Then 

(30) 
Next, define the following: 

A posteriori model output 

j ( t )  = $(t - (31) 

$(I - I ) ~  = [-3t - J ) ,  - j ( t  - 2 4 ,  ..., - j ( t  - nJ),  

u(t - I), u(t - 2), ..., u(t - m), 

where 

Ht),  u(t - I),  . . . , u(t - m)] (32) 
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with the initial values 

$(- 1) = 4(- 1) 
(available from the measurement data) 

$( - 1 + i )  = arbitrary for i = 1,2, . . . , J - 1 

&t)' = Cai(tX . . ., ci.(t), 61(t), . . ., 6,(t), 
? O ( t ) ,  . . ., e,(t)l (33) 

i.e. &t) is the estimate of Bo at time t. 

A posteriori model output error 

q(t)  = fi t)  - 31) 

j@) = $(t - l)'B(t - 1) 

e ( t )  = fi t)  - 3t) 

V(t) = Yq-J)rl(t) 

L(q-J)  = 1 + 1,q-J + ' ' _  + 11,, q-1.J 

A priori model output 

A priori model output error 

Generalised a posteriori output error 

where 

is a fixed moving-average filter. 

Generalised a priori output error 

i(t) = e(t) + [L(q-J)  - I]q(t) (39) 

3.2 Estimation algorithm 
The parameter estimation algorithm is given by 

O(Jt) = B(Jt ~ J )  + P(Jt - 2)4(Jt - l)ij(Jt) 

(40) 
&Jt + i )  = B(Jt) ( i  = 1, 2, . . . , J - 1) (41) 

P [ J ( t  + 1) - 21 

= P(Jt - 2) - P(Jt - 2)4(Jt - 1)4(Jt - l)TP(Jt - 2) 

(42) 

d(0) = arbitrary (43) 

P(-2) > 0 (44) 

- [ I  + 4 ( J t  - l)TP(Jt - 2)4(Jt - 1)l 

+ [l + $(Jt - 1)TP(Jt - 2)4(Jt - l)] 

The regressor $(t) has been defined in eqn. 32. At each 
unity time step, the estimated outputs j(t) and it(t + 1) 
can be calculated by using eqns. 31 and 35 although the 
output is measured only every J sampling intervals. 

3.3 Convergence at the output sampling instants ( for 

The first step is to define the convergence properties of 
the output estimates at the output (slow) sampling inter- 
val JT. 

z ( t )  = 0 )  

Theorem I : Consider the algorithm (eqns. 4 W )  applied 
to the inferential model in eqn. 23 with z(t) 0; then, 
provided that the system H(q-') = [L(q -J ) /A(q -J )  - 1/21 
is very strictly passive: 

(45) 
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which implies that 
N 

lim 2 ij(Jt)' < 00 
N - m  1 = I  

and 
lim 1 ~ ( J c )  - ~ ( J c )  1 = 0 
I" 

(47) 

Also 
N 

lim 1 &Jt - I)TP(Jc - 2)4(Jt - l ) i j (J~)~  < co (48) 
N - m  r = 1  

which implies that 
N 

Iim 1 I I ~ ( J C )  - O [ J ( C  - s)lllz < CO (49) 
N - m  t = 1  

where s is any finite integer. 
If {U([)} is bounded, then 

lim $Jc) = 0 
1-m 

and 

lim I ~ ( J c )  - HJt )  I = 0 
t - m  

Proof: Define 

b(t) = -&(t  - 1)'8(t) 

where 

&c) = O(C) - eo (53) 
Combining eqns. 30 and 31 [and noting that z(c) E 03 
gives 

A(4-J)ll(c) = b(c) (54) 
or more particularly 

A(q-J)q(J t )  = b(Jt) 

Then eqns. 37 and 55 give 

A(q - " i j ( J C )  = U4 - ")YJd (56) 
Multiplying eqn. 40 by &Jc - l )T  and then subtracting 
from v(Jt) gives 

q(Jt )  = e(JC) - &(Jt - 1)TP(Jt - 2)&C - I)C(JC) 

- [l + &Jt - l)TP(JC - 2)4(JC - I)] (57) 
Combining eqn. 57 with eqns. 37 and 39 yields 

ij(JC) = iqJC) 

+- [l + &Jt - l )TP(Jt  - 2)t$(Jt - I ) ]  (58) 
Substituting eqn. 58 into eqn. 40 gives 

O(Jt) = O(JC - J )  + P(JC - 2)&c - l)ij(JC) 

RJC) - P(Jt  - 2)4(JC - l)ij(Jt) = O(JC - J )  

V(JC) = Q(JC)TP[J(t + I )  - 21 - 'B(J t )  

[8(Jt)  - P(JC - 2)4(Jt - I)ij(Jt)]TP(JC - 2)-1 

x [&JC) - P(Jt  - 2)4(JC - l)ij(JC)lT 

(59) 

(60) 

(61) 

Subtracting Bo from both sides yields 

Let 

and then from eqns. 60 and 61 

= V ( J t  - J )  (62) 

or 

8(Jt)TP(Jt - 2)-'8(Jc) - 28(Jt)T$(Jt - l ) f ( J t )  

+ fj(JC - 1)TP(JC - 2)4(JC - l)ijZ(Jt) 

V ( J t  - J )  (63) 

Using the inversion lemma (lemma 3.3.4 of Reference 2), 

e(Jt)TP(Jt - 2)-'8(Jt) 

= e(JC)'{P[J(C + 1 )  - 23-1 

- +(JC - l)$(Jt - l)T)&JC) 

= V(J t )  - 8(Jt)T$(Jt - l)d;(Jt - 1)'8(Jt) (64) 

Combining eqns. 52,62 and 63, 

V(JC) V(JC - J )  - 2[ij(Jt) - b(Jt)/2]b(JC) 

- ~ ( J C  - I)TP(Jc - 2)&Jc - l)ij2(Jt) (65) 

The remainder of the proof is the same as that of 
theorem 3.5.1 in Reference 2, except that the very strictly 
passive condition is used for the relation between 
[ij(Jt) - b(Jt)/2] and b(Jt), where the input sequence is 
)YO), b(J), b(2J), . . . and the output sequence is 
Crt(0) - b(0)/21, [ i j ( J )  - b(J)/21, Ctl(2-J) - b(2J)/21, . . . . 

3.4 Convergence at the input sampling instants ( for 

Using the results from theorem 1, it is now possible to 
define the convergence properties of the output estimate 
at each input sampling interval T ,  i.e. at the output inter- 
sampling points. 

z ( t )  0 )  

Theorem 2: Under the same conditions as theorem 1 : 

~ ~ O ( J C )  - eoli2 G K ~ ~ ~ O ( O )  - 0 ~ 1 1 ~  

K I  = A,.,CP(-2)-' + &-1)4(- l)Tl/Ami"[P(-2)-11, 

vc > o (66) 

where 

and A,,,(. ) and Amin( ) represent the maximum and 
minimum eigenvalues of A in eqn. 23. 

There exists a positive number E such that if {u(c)} is 
bounded then / /  d(0) - Bo I( < E implies 

(a) I At) - ~ c )  I < 6 [ Iim t -m sup IlO(Jt) - e0II 1 
x lim sup I u(t) - u(c - 1) 1 + A(t)  [ 1" 1 

V t  > 0 (67) 

where A(c) is a sequence satisfying Iiml-- A(c) = 0, 6 and 
the two limit superiors are finite numbers. 

(b) lim I y(t) - g(c) 1 = 0 
*-m 

provided that limr-m @Jt)  = Bo or limr-m [u(C) - 
u(c - l)] = 0. 

Proof: Using eqn. 65, 
t 

V ( J t )  = V(0)  - 2 1 b(Ji)[ij(Ji) - b(Ji) + 21 
i = l  

r 
- 1 &Ji - l)'P(Ji - 2)4(Ji - l)fi2(Ji) (69) 
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From eqn. 56 

[ f ( J t )  - b(Jt)/2] = [L(q-')/A(q-') - 1/2]b(Jt) 

= H ( q  ')b(Jt) (70) 

By the very strictly passive assumption of H(q-')  

1 b ( J i ) [ f ( J i )  - b(Ji)/21 > -b(O)[f(O) - b(O)/21 
t 

(71) 
i =  1 

Considering the initial conditions of 4, 

l(0) = L(Y-')rl(t)l t = 0  = rl(0) 

= y(0) - 30) 

= +( - I)=@, - 4( - l)Te(O) 

= +( - 1)'[S0 - 0(0)] 

= -8(o)=+( - 1) (72) 

But 

b(0) = - 8'(0)& - 1) = - P ( O ) + (  - 1) (73) 

and therefore 
I 

b(Ji)[ij(Ji) - b(Ji)/2] > - b2(0)/2 
i = 1  

= - P(O)+(  - I)& - 1)'e(0)/2 

(74) 

Substituting eqn. 74 into eqn. 69 and using the definition 
of V gives 

o(Jt)=P[J(t  + 1) - 2]- 'B(J t )  

< ")[P( -2) + q5( - I)+( - I)'] - q O )  (75) 

where the positive definite property of P is used. By the 
inversion lemma (lemma 3.3.4 of Reference 2) it is easy to 
verify that 

&,,,{P[J(t + 1) - 2]-'] a Amin[P(-2)-'] V t  > 0 (76) 

Then eqns. 75 and 76 immediately yield eqn. 66. 
From eqn. 54, 

44-J ) t l ( t )  = b(t) (77) 

or equivalently, using eqn. 41, 

A(q-')q(Jt + i) = - & ~ t  + i - 1)@Jt) 

i = O ,  1 , 2  ,..., j -  1 (78) 
From eqn. 78 

A(q-')Ctl(Jt + i) - s(Jt)l 
= - [&JC + i - 1) - &JC - ~ ) l e ( ~ t )  

i = 1, 2, ..., J - 1 (79) 

But 

&Jt + i - I )  

= {[Fi(Jt - J ,  q-')q-', F,(Jt - 25, q-')"'', ._., 

F,(J t  - nJ, q-l)q-"']u(Jt + i) 
IEE PROCEEDINGS-D, Vol. 139, NO.  2, MARCH 1992 

+ [F2(Jt - J ,  q- ' )q- ' ,  F J J t  - 25, q-')"'', ..., 
F,(Jt - nJ, q-')q-"']v(Jt + i). 
[q- l ,  q - 2 ,  ..., q-"]u(Jt + i), 

[ I ,  q - ' .  q - ' ,  ..., q-"]v(Jt + i)} 

i = l , 2 ,  ..., J - 1  (80) 

where 

and 

C(t,  q - J )  = ZOIC)  + Zl(t)q-J 

+ Z,(t)q-'J + ' ' ' + Z.(t)q-"J 

By the very strictly passive assumption, A(q-') is asymp- 
totically stable. Thus there exists E ,  > 0 such that if l\@(O) 
- @ 0 1 1 2  < E , ,  then A(0, q-')  is also asymptotically staple. 

From the first part of theorem 2 it is concluded that A(Jt, 
q- ' )  V t  > 0 has uniformly all its eigenvalues strictly 
inside the unit circle for E = E , / K , .  Also from eqn. 49, eqn. 
80 is slowly time varying. Therefore bounded {u(t)} and 
{L(c)}  imply bounded {$(t)}  and the existence of 0 < MI, 
M , ,  M < CO such that 

\l$(Jt + i - I )  - &JC - 1 ) 1 1  
< M,Iu(Jt  + i) - u(Jt)I + M,Iv(J t  + i) - v(Jt)l  

< M I u(Jt + i) - u(Jt) I 
i = 1, 2, ..., J - 1 (81) 

since &kJ + i - 1) - &(kJ - 1) against u(kJ + i) - u(kJ) 
and v(kJ + i) - L(kJ), i = 1, . . ., J - 1 also satisfies eqn. 
80 and the relationship between v ( t )  and u(t) is linear time 
invariant and asymptotically stable by the assumption on 
the eigenvalues of the original process. Considering that 
limt+w q(Jt) = 0 (from eqn. 47) and A(q-') is asymp- 
totically stable, eqns. 79 and 81 yield 

I u(Jt + i) - u(Jt) I + A(Jt + i) 1 
i = 1, 2, ..., J - 1 (82) 

where A(Jt + i), i = 1, 2, . . , , J - 1 are some sequences 
satisfying limt-w A(Jt + i) = 0, 6, and the two limit 
superiors are finite positive numbers. Note that, for i = I ,  
2, .. ., J - 1, limI+w sup lu(Jt + i) - u(Jt)(  < (J  - 1) 
lim,+m sup I u(t) - u(t - 1) 1 .  Part (a) is obtained by 
letting I y(J t )  - 3 J t )  1 = A(Jt), 6 = (J  - 1)6, noting that 

~ ( J c  + i) = y ( J t  + i) - f i J t  + i) 
= y(Jt + i) - &Jt + i - I)=e(Jt + i) 
= y(J t  + i) - &JC + i - I)'&Jt) 

= y(Jt + i) - jj(Jt + i) 
i = l , 2 ,  ..., J - 1  (83) 

and using eqns. 51 and 82. Part (b) is obvious. 
Theorems 1 and 2 are extensions of the results in Lu 

and Fisher [SI. Here the secondary output v ( t )  is included 
in the algorithm and the proofs are more fully developed. 
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The convergence results of theorems 1 and 2 are 
applicable to cases with z(t) z 0 and can be applied to 
the convergence analysis of any adaptive servocontrol 
using the multirate inferential estimation algorithm. 

The estimation algorithm (eqns. 4 W )  can be applied 
to processes operating in noisy, stochastic disturbance 
environments. However, in general, if external stochastic 
disturbances are present then there is model mismatch 
since the parameters of the external stochastic dis- 
turbance model D(q- ' )  are not identified. This makes the 
convergence analysis quite difficult. 

Note that only output convergence is proven and no 
conclusion is made about parameter convergence to the 
true parameter vector. It is not difficult to observe from 
the derivation in the previous section that the param- 
eterisation of the inferential equation [e.g. eqn. 23 with 
z(t) = 07 is, in general, not unique, i.e. Bo can be anything 
belonging to an equivalence class set in the parameter 
vector space. It would be desirable, where parameter con- 
vergence is important, to use some improved algorithm 
with structurally constrained inferential working equa- 
tions so that only a unique convergence point in the 
parameter vector space exists for identification. 

3.5 Simplified algorithm 
The algorithm (eqns. 40-44) has one practical disadvan- 
tage: the number of parameters to be estimated increases 
linearly with J. Since an exact model match cannot be 
achieved by the algorithm when D(q- ' )z( t )  # 0, there is 
no reason not to simplify the algorithm in such cases. 
Decreasing the number of parameters in the algorithm 
would, in general, increase the model mismatch and 
result in poorer performance. However, in some applica- 
tions reducing the number of parameters to be estimated 
improves the numerical conditioning of the estimation 
algorithm and reduces the variance of the output esti- 
mate, thus resulting in better overall performance. Based 
on this observation (cf. parsimony principle [4]), it is pro- 
posed that the algorithm defined by eqns. 4&44 be sim- 
plified by reducing the number of 6 and 2 parameters. 
One extreme case, considered here as a demonstration 
example, is to set 6 i + l ( t )  = ?i t )  E o for i z 0, J ,  25, . . ., 
(n - 1)J. The number of parameters to be estimated in 
the proposed simplified algorithm is 3n and is therefore 
independent of J .  The algorithm could be simplified or 
modified in other ways, for particular applications. 
However the simplified algorithm considered here is 
similar in form to the original algorithm and can achieve 
an exact model match (if i.,J is not set to zero and 
included in the parameter estimate vector) at the output 
sampling intervals if D(q-')z(t) = 0 and the input U is 
kept constant within each primary output sampling inter- 
val, i.e. over J intervals. 

3.6 Predictive estimation 
A one-step-ahead prediction of fit) can be calculated 
from the a priori mode (eqn. 13): 

it(t + 1) = &t)T8(t)  

y,(t + k )  = 4f(t - 1 + k)8(t)  

4,'ct - 1 + k )  = C-j& - J + k), -ye@ - 25 + k), ..., 

(84) 

(85)  

In general, to predict At) k steps ahead 

where 

- j ,(t - nJ + k), . . .] (86) 
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and 

j,(r) = j+) 

Y,(T) = Y , ( T )  

if T d t 
if t r; T 

4 Simulation results 

The simulated process is given by 

- 6.34 e-ksw (88) + 2 ) e - k . u  + ~ 19.2s + 1 
3.6s+ 1 

- 16.877 - 18.0 
U=-----U+- 

9s + 1 3.6s + 1 

This model is a modified version of the linearised distilla- 
tion column model described by Patke et al. [7], where y 
is the composition of one component of the overhead, U 
is the reflux rate, v is a temperature measured at an 
appropriate stage in the column and w is a disturbance in 
the feed. The process output y ( t )  was scaled to a com- 
parable numerical magnitude with respect to that of U 
and U, and for convenience the model was considered to 
be dimensionless. The term (a i (3.6~ + l)}e-"u in eqn. 88 
was added to the original model of Patke et al. [7] to 
illustrate different modes of coupling between u(t) and 
f i t ) .  (In the following simulation examples a = 0.0 or 
U = 0.5.) 

4.1 Open-loop output estimation without 

For the process defined by eqns. 88 and 89 the time delay 
k = 0, the disturbance w = 0 and the input U is a PRBS 
sequence passed through a zero-order hold. The sampling 
interval for U and U is one time unit but the sampling 
interval for the output y is 10 units, i.e. J = 10. The 
appropriate working equation, as defined in Section 2, is 

disturbances (J = 10) 

10 10 

i = l  ,=0 
(1  + alq-'O)y(t) = 1 biq-'u(t) + ,z ciq-'u(t)  (90) 

For the simplified algorithm, the following working equa- 
tion is used : 

(1 + a,q-'0)y(t)  = b,q- 'u( t )  + coo(t) (91) 
Since a zero-order hold is used, the algorithm (eqns. 
W 4 )  with the working equation (eqn. 90) (full 
algorithm) allows an exact model match to the simulated 
plant model. 

If the simplified algorithm is used, there is model mis- 
match because of the insufficient number of estimated 
parameters. 

When using the full algorithm, it is not necessary to 
use u(t)  even if a # 0. However, if u(t)  is not used the 
assumptions about the state representation of the process 
change accordingly, e.g. the observability index with 
respect to u(t)  becomes zero. Therefore the structure of 
the working equation has to be reformulated (see Lu and 
Fisher [5 ,  6]), i.e. the working equation cannot be 
obtained by simply dropping the o(t) terms in eqn. 90. 
The output estimate will still converge to the real output 
and the number of parameters to be estimated does not 
change [6]. The advantage of using v(t) is that each 
common mode shared by y and U will, in general, reduce 
the length of the data window by J and improve the 
numerical conditioning of the algorithm. 

When the simplified algorithm is used, the secondary 
measurement u(t) is necessary even if a = 0 because it 
partially compensates for the information lost by omit- 
ting J ~ I values of u(t) in the regressor. 
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Note that with the approach of Guilandanst et al. [3] 
their working equation cannot be formulated for this case 
with w(t) = 0, since the existence of a sustained external 
stochastic disturbance is assumed by their approach. 

The performance of the full algorithm is shown in Fig. 
2 (a = 0) and Fig. 3 (a = 0.5) and shows excellent con- 

-3 

-1 0 1  

. .  . .  . .  
I I ': I 

Ideal case: The best control should be obtained when all 
measurements are available at the desired control inter- 
val, i.e. I = 1 and y , ( l t )  = f i t )  in eqn. 93. Fig. 6 shows the 
closed loop response with and without the process time 
delay (k = 5). The controller constants K, = 0.2 and = 
10 were obtained by trial and error tuning. 
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Fig. 2 Output estimation with full algorithm 
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Fig. 4 Output estimation with simplified algorithm 
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1 1  
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time,units of U sampling interval 
Fig. 3 Output estimation with full algorithm 
u = p R B S . a = 0 , 5 . - y .  ........ j > ,  

vergence of the output estimates to the real output. The 
output estimates j ( t )  in Figs. 4 and 5 produced by the 
simplified algorithm are not as good as the correspond- 
ing estimates in Figs. 2 and 3, but are still a good approx- 
imation of f i t ) .  The sacrifice in output estimation 
accuracy may be worthwhile since the number of esti- 
mated parameters is significantly reduced (from 22 to 3). 

4.2 PI feedback control with disturbances (J = IO) 
The disturbance w(t) is defined by the following series of 
step changes: 

w(t) = +0.7 
w(t) = -0.7 

1OO(i - 1) < t -= lOOi i = 1, 3, 5, ... 
lOOi < t < lOO(i + 1) i = 1, 3, 5, ... 

(92) 
The control objective is to maintain the output at the 
desired value y = 0 using U as the control variable. A 
conventional proportional-integral feedback controller is 
chosen for simplicity so that 

u(It) = k ,  y , ( I t )  + (k,  I / T J  2 y,(Ii) t = 1,  2, ... (93) 
i = 0  

When eqn. 93 is used with the adaptive inferential estima- 
tion algorithms, a small perturbation signal is added to U 
to improve the excitation. y, and I (I = 1 or J) are selec- 
ted for each specific case as described below. 
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Fig. 5 Output estimation with simplified algorithm 
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Practical case: With the conventional proportional- 
integral control scheme if J = 10 the control interval 
must be increased from one time unit to 10, i.e. 
I = J = 10 and y,( l t )  = y ( l t )  in eqn. 93. As expected, the 
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control performance (solid line in Fig. 7) becomes oscil- 
latory and control detuning is required (dotted line, 7; 
increased to 60). If a time delay k = 5 is included, the 
performance degradation is even more severe (results not 
shown). 

I I I 
100 200 300 0 

time,units of U sampling interval 

Fig. 7 
y ( t )  at the slow sampling intervals, i.e. every J T  intervals) 
~ 

... ... T - 6 0  

Closed loop PI control, practical case (using the process output 

with delay; K c  = 0.2: 7; = 10 

Multirate inferential control with delay compensation: The 
output is sampled every J = 10 intervals but estimates of 
the output y, are produced at every control interval, i.e. 
I = 1 and y(1t) = y,(t + k )  in eqn. 93. As shown in Figs. 8 

3r 

I I I 

0 100 200 300 
time, units of U sampling interval 

Multirate inferential control with no delay Fig. 8 
~ 

Y. 

(k  = 0) and 9 (k = 5), the estimated output values are 
very close to the true values and control performance is 
very close to the ideal case plotted in Fig. 6. However the 
case with time delay (Fig. 9) is not as good as the corre- 
sponding case with no delay. 

SimpliJied multirate inferential control: The open-loop 
output estimation results in Figs. 2-5 showed that the 
output estimation error increased when the simplified 
algorithm was used. However, Fig. 10 shows that under 
closed-loop conditions the simplified algorithm produced 
output estimates and control performance equal to, or 
better than the full algorithm (Fig. 8). When a process 
delay is included (Fig. l l) ,  the output estimates and the 
control performance are again slightly better than the full 
algorithm (Fig. 9). 

The improved results obtained with the simplified 
algorithm are example dependent. However, for a given 
application it is obviously worthwhile to evaluate both 
the full and various simplified algorithms. 

-3 L I I ?  I 
0 100 200 300 
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Multirate inferential control with delay k = 5 Fig, 9 
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' '  F. 

3r 

-T 
-31 I I I 

0 100 200 300 

time,units of U sampling interval 

Fig. 10 Multirate simplfied inferential control with no delay 
~ 
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Fig. 11 Multirate simplified inferential control with delay k = 5 
-~ 

Y, 

5 Conclusions 

A multirate inferential estimation algorithm based on 
{u(t), dt), y(Jt), t = 0, 1, 2, ...} is derived. The output con- 
vergence properties are formally proven for the case 
without unmeasured external stochastic disturbances. 
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Multirate inferential control using the output esti- 
mates y,(t)  rather than the measured values AJt) is sig- 
nificantly better than the comparable conventional 
single-rate control scheme using y ( J t )  and approaches 
that of the ideal case where the output is measured every 
sampling interval, i.e. the output values y(t) are used. 

A simplified inferential algorithm is presented which 
actually outperforms the full algorithm in the closed- 
loop-simulation example. However, the convergence 
properties are not formally proven. 

The algorithm has direct application in the process 
industries (e.g. distillation columns) where the output 
measurements y ( J t )  (e.g. composition) are available only 
at intervals J times slower than the desired control inter- 
val, and a secondary measurement u(t) (e.g. temperature) 
is available at every control interval. It can also be used 
as an alternative to many conventional cascade control 
loops in which the outer loop operates with a sampling 
interval JT and the inner loop with T .  
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