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Abstract 
An inferential feedforward control strategy is developed and 
applied to a simulated distillation column. In this control 
strategy, the effects of disturbances on the primary process 
variables (top and bottom compositions) are inferred from 
uncontrolled secondary process variables (tray 
temperatures) which can be easily measured. The proposed 
strategies are particularly useful when disturbances cannot 
be measured easily or economically. Robustness of the 
inferential feedforward controllers and the selection of 
appropriate secondary measurements are discussed. 
Nonlinear dynamic simulation results demonstrate the 
superior performance of this control strategy and verify the 
robustness analysis. 

Keywords: Feedforward control, disturbance rejection, 
inferential control, distillation composition control. 

1. Introduction 
The primary function of a process control system is to 
maintain the controlled process variables at their desired 
values in the presence of disturbances. Process plants can 
have large time constants and long time delays. Substantial 
measurement delays in some process variables such as 
concentration often exist. The effects of disturbances may 
therefore not be satisfactorily rejected through feed back 
control only. A strategy widely used in process control is 
feedforward control (Shmkey, 1979) where disturbances 
are measured and anticipatory control actions are taken 
before the controlled variables are actually affected. 

In many situations, however, some disturbances cannot be 
easily measured. Therefore it is not possible to apply direct 
feedforward control in connection with these disturbances. 
However, in most process plants there are usually some 
easily measured secondary process variables, which may or 
may not be controlled. The correlation between 
disturbances and the uncontrolled secondary process 
variables makes it possible to infer the effects of 
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disturbances from the measurements of these uncontrolled 
variables. If the secondary process variables are controlled, 
then the changes in their associated manipulated variables 
can be used to infer the effects of disturbances. Based on 
these inferred disturbances, feedforward control can be 
implemented indirectly. Yu and co-workers (Yu, 1988; Shen 
and Yu, 1990; 1992) proposed an indirect feedforward 
control strategy where the effects of disturbances are 
inferred fiom changes in the uncontrolled secondary process 
variables. McAvoy et al. (1996) propose a nonlinear 
inferential cascade control strategy to consider the nonlinear 
aspects in many industrial processes. This paper presents an 
inferential feedforward control strategy for a distillation 
column. The effects of disturbances on the top and bottom 
product compositions are inferred from the measurements 
of tray temperatures. This approach shares some common 
ideas with the indirect feedforward control strategy of Yu 
and co-workers (Yu, 1988; Shen and Yu, 1990; 1992). 
However, the robustness issues, which are not addressed by 
them, are discussed here. 

The paper is organised as follows. Section 2 presents the 
inferential feedforward control strategy and its robustness 
analysis. A procedure for secondary measurement selection 
taking into account of the robustness issues is also 
presented. Section 3 describes the applications of this 
control strategy to a comprehensive nonlinear simulator of a 
methanol-water separation column. The final section 
contains some concluding remarks. 

2. Inferential feedforward control 
2.1 Feedforward control 
A feedforward control system is shown in Figure 1, where 
disturbances are measured and compensating control 
actions are taken through the feedforward controller. 
Deviations in the controlled variables can be calculated as 

Ay = GFM + GdM (1) 

where G is the process transfer function model, Gd is the 
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disturbance model, F is the feedforward controller, U is a 
vector of the manipulated variables, and d is a vector of 
disturbances. 

d 

Y + +  +& G* + +  U 

Figure 1. A feedforward control system 

In order to make Ay zero, a feedforward controller of the 
following form is designed. 

F = -G'Gd (2) 
In process plant applications, F is typically chosen to be of 
static form, and it is this approach that will be adopted in 
this work. To use this feedforward control strategy, the 
disturbances d have to be measured. 

Figure 2. Inferential feedforward control 

2.2 Inferential feedforward control using secondary 
process variable measurements 
2.2.1 The structure 
The framework of this control strategy is shown in Figure 2, 
where y represents the primary controlled variables and ys 
the secondary process variables, d is a vector of unmeasured 
disturbances, and F is the inferential feedforward controller. 
The feedforward control actions can be calculated as 

AU = FAys = F(GaM + G&) (3) 

Rearranging Eq(3) gives 

The deviations in the primary process variables are given by 

AY = GAU + Gd]M 

= { G(I - FG,)-'FG& + Gdi }U (5) 
To make Ay zero, it is required that 

G(Z - FGJ'FGa + Gd = 0 (6) 

Pre-multiplying both sides of Eq(6) by G' and rearranging 
it give the following equation. 

( I  - FG,)-'FG& = -G-'Gdl 

AG& = -G-'Gdl (8) 

(7) 
Denoting (Z-FGJ'F by A, Eq(7) then becomes 

If G& is square and non-singular, then there is only one A 
which solves Eq(8). If G a  has more independent columns 
than independent rows, then there are many As which can 
solve Eq(8). If Ga has more independent rows than 
independent columns, then no A will solve Eq(8). Here, we 
chose A to be 

A = -G'GdlGa+ (9) 
where (e)+ denotes the pseudo-inverse of (0) (Strang, 1980). 

If G a  is square and non-singular, then its pseudo-inverse is 
the standard inverse and the A determined by Eq(9) is the 
unique solution to Eq(8). If Ga has more independent 
columns than independent rows, then the A obtained from 
Eq(9) solves Eq(8) in the least squares sense. If G, has 
more independent rows than columns, then the A calculated 
from Eq(9) is the solution of Eq(8) having the smallest 
norm (Strang, 1980). A smaller matrix A, i.e. smaller (Z- 
FGJ'F, will provide increased robustness as will be shown 
later. 

Once A is obtained, F can be determined by solving the 
following equation 

(I-FGJ'F = A  (10) 
Pre-multiplying both sides of Eq(l0) by (Z-FG,) and 
rearranging it give the following equation. 

F(Z + CA) = A (11) 
The inferential feedforward controller F can then be 
obtained as 

F = A(Z+ CA)-' 

= -G'GdlGa+(z - GsG' GdlG,+)-' (12) 

It can be seen that the feedforward controller designed 
according to Eq(12) will eliminate the effects of 
disturbances on the primary process variables. If the models 
are perfect, then the effects of disturbances on the primary 
process variables will be either completely rejected if Ga 
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has more independent rows than independent columns or 
maximally rejected if G a  has more independent columns 
than independent rows. However, model-plant mismatches 
exist in most process plants and, therefore, an inferential 
feedforward controller alone cannot completely eliminate 
control offsets. It should be used in conjunction with a 
feedback controller. 

2.2.2 Controller tuning 
The addition of an inferential feedforward controller 
changes the overall process model and the effects of the 
inferential feedforward controller need to be taken into 
account when the feedback controller is tuned. Deviations 
in y ,  are given by 

A ys = Gi(Au + FA y, ) + G & i  (13) 

Rearranging Eq( 13) gives 

A Y ,  = ( I -  G, F)-' G,AU + ( I -  G, q-' G ~ M  (14) 

Deviations in the primary process variables are 

A y  = G(Au+FAy,)+GdlM 

= G[Au + F(Z - G, F)-'G, AU + F(Z - G, v' GaAd] + GdlM 

= G[Z+ ( I -  FG,)"FG,]Au+ 

[G(Z - FG, ) -'FGa + G d l ] M  (15) 

Due to the effects of the inferential feedforward controller, 
the process model is thus changed to 

GN =G[Z+(Z-FG,)- 'FG,]  (16) 
Therefore, the feedback controller should be tuned for the 
new model, GN, for example, using the biggest log modulus 
tuning (BLT) method proposed by Luyben (1986). 

From Eq(12) and Eq(16), the steady state GN is obtained 
as 

GN (0) = G(O)[I - G-'(o)GddO) Gd2+(O)Gs(O)l (17) 

2.2.3 Robustness 
The studies of the effects of model uncertainties in process 
models and disturbance models are particularly important 
and it is necessary to consider the impact of model 
uncertainties on the inferential feedforward controller. 
Model-plant mismatches always exist in practice, especially 
when a nonlinear process is approximated by a linear model 
around a particular operating point. Model uncertainties are 
assumed here to be norm bounded additive uncertainties of 
the following forms 

- 
Gd2 = G d 2 + A 2 ,  C ( A 2 ) 5 l 4  (21) 
- -  

where G , G, ,  c d l ,  and c d 2  are the true models; G, G,, 
Gdl, and G& are -the corresponding nominal models; A, 
A,, AI,  and A2 are the corresponding model uncertainties; 
11, 12. 13. and l4 are the corresponding uncertainty bounds; 
and 8 denotes the maximum singular value of a matrix. 

Deviations in the primary process variables can be 
calculated from Eq(5) as 

Ay = ( ( G  + A)(Z - F(G, +A))-'F(Ga +A21 + G ~ I  + &}Ad 

= [ (G + A)(Z - FG, -FA,)-'F(Ga +Ad + Gdl+ A1)M 

= [ (G + A)(Z - ( I  - FGJ'FAJ'(I - FG,)-'F(Ga +A2) 

+ Gdi + AI 

= { ( I  + G')G(I - (1 - FG,)~'F'&)-'(I - FG,)-'FGa + Gdl}M 

+ [ ( I  + G-')G(Z - ( I  - FGJ'FA,)-'(Z - FG,)-'FA2 + Al }Ad 

= { ( I +  G-')G(Z- (I-,FG,)-'FA,)-'(Z- FG,y'FG&+ Gdl}Ad 

+ [ ( I  + G-')G(Z - FG,)-'F(Z - A,(Z - FG,)"F)-'A2 

+AI (22) 

In order to make the effects of model uncerpinties small, 
both ( I  - FGJ'F and G(Z - FGJ'F should be small. Eq(9) 
and Eq( 10) indicate that 

( I  - FG,)"F = -G'GdlGa+ (23) 

Thus, the effects of model uncertainties will be small if both 
s(G-'GdlGd+2) and F(GdlGi2)  are small. 

2.2.4 Secondary measurement selection 
The inferential feedforward controller is usually designed 
for specific disturbances. Suppose that d' is a different 
disturbance which was not considered in the designing of 
the inferential controller. The disturbance gains from d ' to 
the primary process variables are Gd ' , whilst those to the 
secondary process variables are G a  ' . The deviations in the 
primary process variables caused by d' can be calculated 
from Eq(5) as 

A y  = {G(z - FG, )-'FG&' + Gdl' }Ad' 

= {Gdl' - Gdl G&+ }U' (24) 

It is then desirable that G a  = [ Gdl' - Gdl Ga+ Ga' } be 
small. 

There may be a number of secondary process variables that 
can be measured. Secondary measurements can be selected 
so as to minimise the effects of model uncertainties and 
unconsidered disturbances. Shen and Yu (1990) propose a 
procedure where secondary measurements are selected so as 
to reduce the effects of unconsidered disturbances. Here we 
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argue that robustness is also an important factor to be 
considered in selecting secondary measurements. 

Feed flow rate (F) 
Top composition (y) 
Bottom composition (x) 
Tou uroduct rate f D )  

Eq(16) indicates that the selection of secondary 
measurements will also affect the overall process model. 
If the primary controllers used are diagonal controllers, then 
it would be desirable that the off diagonal elements in the 
process model are relatively small so that control loop 
interactions are small. Since the objective of employing a 
feedforward controller is to counteract disturbances as soon 
as possible, the secondary measurements should have fast 
dynamic response to the considered disturbances so that the 
presence of a disturbance can be sensed quickly. The 
followings are therefore some factors that ought to be 
considered when selecting secondary measurements. 

1). The selected secondary measurements have fast 
responses to the considered disturbances; 
2). z(G-’GdlGiz)  is S d l ;  

3). z(Gd1Gzz) is small; 
4). Elements of { Gdl ’ - GdlGd+GdZ } are small; 
5).  OR diagonal elements of G[Z - GiGdlGd2+1 are 
relatively small if diagonal controllers are used. 

18.23 g/s 
95% methanol 
5% methanol 

9.13 ds 

3. Application to a distilldon column 
3.1 The distillation process 
The distillation column studied in this paper is a 
comprehensive nonlinear simulation of a methanol-water 
separation column. A nonlinear tray by tray dynamic model 
has been developed using mass and energy balances. This 
simulation has been validated against pilot plant tests and is 
well hown for its use in control system performance 
studies (Tham et al, 1991a; 1991b). The following 
assumptions are imposed: negligible vapour holdup, perfect 
mixing in each stage and constant liquid holdup. The 
nominal operation data for this column are listed in Table 1. 

Feed flow rate (F) 
Top composition (y) 
Bottom composition (x) 
Tou uroduct rate f D )  

Feed tra 
50% methanol 

18.23 g/s 
95% methanol 
5% methanol 

9.13 ds 
Bottom product rate (B)  
Reflux rate (L) 
Steam rate (v) 

9.1 g/s 
10.0 g/s 
13.8 gls 

The process model and the disturbance model for the LV 
configuration are obtained through the application of a 
series of step response tests. In the LV configuration, the top 
composition y is controlled by the reflux flow rate L and the 
bottom composition x is controlled by the steam flow rate to 
the reboiler V. The condenser level is controlled by the top 

product flow rate and the reboiler level is controlled by the 
bottom product flow rate. Product compositions are 
measured and it is assumed that there is a five minute time 
delay in the composition analysers. Disturbances considered 
here are feed rate disturbances and feed composition 
disturbances. The sampling interval is one minute. For the 
purpose of control system synthesis, the process is 
approximated by the following linear model: 

To identify the transfer function models G(s) and Gd(s), 
step changes in reflux flow, steam flow to the reboiler, feed 
flow rate, and feed composition were imposed on the 
column and the resulting process data recorded. The 
process and disturbance models are approximated by first 
order lag plus delay models, in line with a number -of 
previous studies using this column. Since the distillation 
column exhibits some degrees of nonlinearity, a series of 
positive and negative step changes are applied. From these 
plant test data, linear discrete time models were identified 
using least squares regression and converted into continues 
time transfer function models. 

The identified process model is 

[ 1.09e”s - 1.30e”s 1 
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117.15s + 1 29.50s + 11 
and the identified disturbance model is 

0.34e-5s 10.85e-5s 
89.29s + 1 15.43s + 1 (27) 

Gdl  = [ 2.64e-5s 70.26e-5s 1 
16.67s + 1 26.25s + 1 

Dynamic models for tray temperatures were also identified. 
Here only the gains are given in Table 2. 

3.2 Inferential feedforward control using tray 
temperatures 
In this study, the disturbances considered are feed rate and 
feed composition disturbances. In this case, two tray 
temperature measurements are necessary and sufficient to 
make Eq(8) having a unique solution. Here we use two tray 
temperatures to design the inferential feedforward 

GN, and the relative gain (All) were carried out for all the 
possible selections and some typical results are given in 
Table 3. 

controller. Computations Of 3(G-’GdlGi2)  , 5(GdlG:2) , 



Table 2. Tray temperature gains 
I Tray I L I  V I  F I  z I 

No. 
1 
2 

-2.8915 6.4034 -4.4611 -102.3443 
-1.8574 5.9962 -3.9206 -75.4604 

Feedback 
control 
only 
Feedback 
control 
with FI 
Feedback 
control 
with F2 

7 I -0.9795 I 1.2064 I -0.3962 I -12.2655 
8 I -0.6352 I 0.7333 I -0.2021 I -6.3523 

Top comp. 
Kc1 Til 

0.6477 19.3399 

0.6543 18.9721 

0.9747 11.1862 Table 3. Com arison of different tra tem erature selections 

0.1889 0.9807 0.88 -0.77 1.18 
0.56 -3.23 

3 
4 
5 

-0.8662 3.2257 -1.9184 -41.8082 
-0.4552 1.2205 -0.7124 -28.0815 
-0.8146 1.5265 -0.7478 -23.6853 

1,8 

2,7 

From the results shown in Table 3, selecting tray No. 1 and 
4 is the most robust selection. Table 3 indicates that it is not 
advisable to select tray No. 5 and 6 as this is a very non- 
robust selection. The relative gains shown in Table 3 also 
indicate that tray No. 1 and 4 should be selected while tray 
No. 5 and 6 should be avoided. To verify this analysis, two 
inferential feedforward control schemes were developed. 
One uses tray No. 1 and 4 while the other uses tray No. 5 
and 6. 

1.2493 5.9703 -0.05 -0.01 2.15 
-2.30 -0.88 

0.5675 4.3106 0.19 -0.22 0.19 
-2.31 -0.63 

The inferential feedforward controller based on tray No. 1 
and 4 is calculated using Eq( 12) as 

3,6 

5,6 

- 0.1029 0.0948 
- 0.1599 - 0.2401 

0.3826 2.3840 0.46 -0.47 0.73 
-0.65 -1.79 

35.6054 97.5617 0.24 -0.35 -0.70 
31.30 -19.2 

while that based on tray No. 5 and 6 is 

1 4.6478 - 7.5999 
F2 =[ 4.3878 - 8.4525 

The two inferential feedforward controllers were 
implemented in conjunction with diagonal PI controllers 
(feedback controllers). For the purpose of comparison, a 
feedback controller (multi-loop PI controller) without 
inferential feedforward control was also developed. All the 
controllers were tuned using the BLT tuning method 
(Luyben, 1986) and the controller parameters are given in 

Table 4. 

0 100 200 3M) 400 500 600 700 800 900 
45 

21 r 

'"0 loo 200 300 400 500 600 700 800 900 
Time (min) 

Figure 3. Disturbance sequence 

To test the performance of the inferential feedforward 
controllers, disturbances shown in Figure 3 were applied to 
simulation. These disturbances represent a 10% increase in 
the feed rate at the 51" minutes, a 10% increase in the feed 
composition at the 251" minutes, a 10% decrease in the 
feed rate at the 451'' minutes, and finally a 10% decrease in 
the feed composition at the 651" minutes. Figure 4 shows 
the performance of the three control systems. The sepoint 
for the top composition is 95% methanol while that for the 
bottom composition is 5% methanol. The solid, dashed, and 
dotted lines in Figure 4 represent, respectively, the 
responses from feedback control only, feedback control 
with Fl, and feedback control with F2. The sums of squared 
control errors of the three control schemes are given in 
Table 5. It can be seen from Figure 4 and Table 5 that 
improved control performance has been obtained by using 
F I .  Using Fz improves the top composition control 
performance. However, it significantly deteriorates the 
bottom composition control performance. This is most 
likely due to the fact that the control system with Fz is not 
robust to model uncertainties. The simulation results verify 
the robustness analysis presented in this paper. 
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Table 5. Sum of squared control errors 
Control schemes 
Feedback control only I 23.19 I 195.69 

I Topcomp. I BottomComp. 

Feedback control with F1 I 17.47 I 117.85 ~~~ 

Feedback control with F2 I 2.71 I 3097.8 

-:no IFFC -:IFFC with trays 1 & 4; ..:IFFC with trays 5 8 6 
96 

wA I W  200 300 4&l 5k 6W 700 800 9AO 

151 I 

0: I00 *w 4 0  4&l A. do 7W do 9 L  
lime (min) 

Figure 4. Control performance 

5. Conclusions 
An inferential feedforward control strategy is proposed and 
applied to distillation composition control. In this control 
strategy, the effects of disturbances on the primary process 
variables are inferred from certain easily available 
measurements of uncontrolled secondary process variables. 
This strategy is particularly useful when disturbances cannot 
easily be measured and, hence, direct feedforward control 
cannot be applied. The main advantage of such an 
inferential feedforward control strategy is that 
measurements of disturbances are not needed. Robustness 
analysis of the inferential feedforward control strategy is 
carried out and it is shown that robustness is an important 
factor in the selection of secondary measurements. 
Nonlinear dynamic simulation results show that the 
proposed strategies can greatly improve disturbance 
rejection ability of the distillation composition control 
system. Robustness analysis presented in this paper is also 
verified by the simulation results. Inferential feedforward 
control with multiple tray temperatures (more than two) will 
be studied and reported in the future. 
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