
Proceedings of the American Control Conference 
Arlington, VA June 25-27, 2001 

Inferential Feedback Control of Distillation Composition based on PCR and PLS 
Models 

Jie Zhang 
Centre for Process Analytics and Control Technology 

Department of Chemical & Process Engineering 
University of Newcastle, Newcastle upon Tyne NE1 7RU, U. K. 

Tel. 44-19 1-2227240, Fax: 4- 19 1-2225292 
E-mail: jie.zhang@newcastle.ac.uk 

Abstract 
A principal component regression (PCR) and partial least 
squares (PLS) model based inferential feedback control 
strategy for distillation composition control is developed. 
PCR and PLS model based software sensors are developed 
from process operational data so that the top and bottom 
product compositions can be estimated from multiple tray 
temperature measurements. The PCR and PLS software 
sensors are used in the feedback control of the top and 
bottom product compositions. This strategy can overcome 

.the problem of substantial time delay in composition 
analysers based control and the problem of substantial bias 
in single tray temperature control. Static estimation bias and 
the resulting static control offsets are eliminated through 
mean updating of process measurements. Applications to a 
simulated methanol-water separation column demonstrate 
the effectiveness of this control strategy. 

Keywords: Software sensors, inferential control, principal 
component regression, partial least squares, distillation 
column control. 

1. Introduction 
In the control of distillation columns, it is usually difficulty 
to get accurate and reliable product composition 
measurements without time delay. Many composition 
analysers such as gas chrotomography usually possess 
significant time lags. The overall time lags in composition 
measurements are typically between 10 to 20 minutes 
(Mejdell and Skogestad, 1991). Such long time lags 
significantly reduce the achievable performance of 
composition controllers. A further drawback of composition 
analysers is that their reliability is usually quite low. Using 
composition analysers in distillation composition control 
will therefore incur high maintenance cost. Therefore, in 
distillation composition control, it is a usual practice to use 
tray temperatures to represent product compositions. In a 
binary distillation column, the temperature of a tray at the 
top of the column is usually used to represent the top 
product composition while the temperature of a tray at the 
bottom part of the column is usually used to represent the 
bottom product composition. Compared with composition 
measurements, temperature measurements are more reliable 
and economic and virtually without any measurement time 

lags. As pointed out by Kister (1990), tray temperatures are 
usually used in distillation composition control unless the 
differences between the boiling points are small or tight 
control of composition can bring in significant economic 
benefit. 

However, using a single tray temperature to represent 
product composition has the following drawbacks (Mejdell 
and Skogestad, 1991): 1). even for binary mixtures the 
relationship between tray temperature and product 
composition depends on the feed composition and the 
product composition at the other end of the column; 2). for 
multicomponent mixtures the presence of off-key 
components implies that even at the column ends 
temperature is not an exact indicator of composition; 3). 
column pressure variations can affect tray temperatures; 4). 
feed rate jump can also affect tray temperatures. To 
overcome these problems, multiple tray temperatures should 
be utilised. Due to the strong correlation among tray 
temperature measurements, multiple linear regression is 
usually inappropriate and the PCR or PLS methods should 
be utilised (Kaspar and Ray, 1992; Kresta et aL, 1991). 
Mejdell and Skogestad (1991) report the estimation of 
distillation compositions from multiple temperature 
measurements using the PLS regression technique. 

This paper presents a PCR and PLS model based inferential 
feedback control strategy. A PCR or PLS model is 
developed from process operational data so that the top and 
bottom product compositions can be estimated from 
multiple tray temperature measurements. The estimated 
product compositions are directly used in a feedback 
control loop. A technique for e l i t i n g  estimation bias 
and the associated static control offsets through process 
measurement mean updating is proposed in this paper. 

The paper is structured as follows. Section 2 presents PCR 
and PLS model based software sensors for product 
compositions. Inferential feedback control based on the 
PCR and PLS models is detailed in Section 3. Eliminating 
static estimation bias and the associated static control 
offsets through mean updating is given in Section 4. The 
last section contains some concluding remarks. 
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2. PCR and PLS model based software sensors 
The distillation column studied in this paper is a 
comprehensive nonlinear simulation of a methanol-water 
separation column. A nonlinear tray by tray dynamic model 
has been developed using mass and energy balances. This 
simulation has been validated against pilot plant tests and is 
well known for its use in control system performance 
studies (Tham et al., 1991a; 1991b). The following 
assumptions are imposed: negligible vapour holdup, perfect 
mixing in each stage and constant liquid holdup. The 
nominal operation data for this column are listed in Table 1. 

Feed tray 
Feed composition (z) 
Feed flow rate (F) 

Table 1. Nominal distillation column operation data 
1 NO. of theoretical stages I 10 

5 
50% methanol 

18.23 g/s 
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Figure 1. Top and bottom product compositions 

In this study the nominal operating point considered is the 
top composition at 95% and the bottom composition at 5%. 
To generate data for building PCR and PLS inferential 
estimation models, random perturbations of +15% were 
added to the feed rate and the feed composition. 
Measurement noises of the distribution N(O°C, 0.1OC) were 
added to the tray temperature measurements. Figure 1 
shows the top and bottom product compositions while 
Figure 2 shows the tray temperatures. The sampling time 
used is 1 minute. 
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Figure 2. Tray temperatures 
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Figure 3. Accumulate data variance explained by principal 
components 

It can be seen from Figure 2 that strong correlation exists 
among the tray temperatures. Principal component analysis 
of the tray temperature measurements shows that the first 
three principal components can explain 93.6% of the data 
variation. Figure 3 gives the accumulated data variance 
explanation of the principal components. Due to the strong 
correlation among tray temperatures, it is not appropriate to 
build a model between tray temperatures and product 
compositions using multiple linear regression. Here we use 
PCR to build the model. The last 240 data points in Figures 
1 and 2 were used as training data while the frst 150 data 
points were used as testing data. The appropriate number of 
principal components retained in the PCR model was 
determined based on the PCR model errors on the testing 
data. Figure 4 shows the mean squared errors (MSE) of 
different PCR models on the testing data. It can be seen that 
the model with 7 principal components has the smallest 
MSE on the testing data. Hence, the number of principal 
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components were determined as 7. The identified PCR 
model is: 

Y D  = 95 + 0.0252AT1- 0.005 lAT2 + 0.0036AT3 + 
0.0456AT4 + 0.1 142AT5 - 0.079OATs - 0.3964AT7 
- 0.3279ATg - 0.2375AT9 - 0.0965ATio (1) 

Y B  = 5 - 0.9916ATi - 0.1666ATz + 0.1330AT3 + 
O.0968AT4 - 0.1829ATs - 0.053OATs + 0.1271AT7 
+ 0.1878ATs + 0.0091ATg + 0.0483ATio (2) 

where YD and ye are the top and bottom compositions (%) 
respectively, ATl to AT,, are the deviations of tray 
temperatures from their nominal mean values. Figure 5 
gives the predictions from this PCR model. In Figure 5, the 
solid lines represent the true compositions from simulation 
whereas the dashed lines represent PCR model predictions. 
It can be seen the PCR model predictions are quite accurate. 
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Figure 4. Mean squared errors of different PCR models 
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Figure 5. Predictions from the PCR model 
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Figure 6. Mean squared errors of different PLS models 

A PLS model was also developed for this process. Once 
again the last 240 data points in Figures 1 and 2 were used 
as training data while the first 150 data points served as 
testing data. The appropriate number of latent variables 
retained in the PLS model was determined based on the 
model prediction errors on the testing data. Figure 6 gives 
the MSE of different PLS models on the testing data. It can 
be seen from Figure 6 that the model with 4 latent variables 
has the smallest MSE on the testing data. Therefore we 
selected 4 latent variables in the PLS model. The identified 
PLS model is: 

Y D  = 95 + O.o015ATi+ 0.0045ATz + 0.0181AT3 + 
0.0269ATd + 0.0387ATs - 0.0350ATs - 0.2246813 
- 0.3419ATg - 0.4682ATg - O.0545ATio (3) 

Y B  = 5 - 0.4903ATl- 0.2535AT2 - 0.2208AT3 - 0.0052AT4 
+ 0.1115ATs + O.1467ATs + 0.1134AT7 + 0.1530ATg + 
0.0864AT9 - O.0912AT10 (4) 

Figure 7 shows the predictions from the PLS model. In 
Figure 7, the solid lines represent the true simulated product 
compositions while the dashed lines represent the PLS 
model predictions. It can be seen that the PLS model 
predictions are quite accurate. 

3. Inferential feedback control of distillation 
composition 
The PCR and PLS software sensors developed in the 
previous section were used in the feedback control of 
distillation compositions. The software sensor based 
feedback control structure is shown in Figure 8. In this 
control structure, the manipulated variables for composition 
control are reflux rate (L) and the steam rate to the re-boiler 
(V). Tray temperature measurements are fed to the PCR (or 
PLS) based soft-sensor. The predicted product compositions 
are compared with their setpoints and the errors are fed to a 
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feedback controller. The feedback controller can be of any 
form such as a multi-loop controller or a multivariable 
controller. In this study, a multi-loop PI controller was used. 

-:pmcess; -:PLS model predictions 
96 1 

respectively. Therefore, the setpoints for tray 2 and 8 
temperatures were set as 86.6OC and 7OoC respectively. In 
the composition analyser based composition control, a 5 
min measurement lag was assumed. For all the cases, multi- 
loop PI controllers were used and tuned using the BLT 
tuning method (Luyben, 1986). 

Figure 9 shows the responses of the composition controllers 
under feed rate and feed composition disturbances. In 
Figure 9, the feed rate was increased by 15% at the 51" 
minutes, the feed composition was increased by 15% at the 
251'' minutes, the feed rate was decreased by 15% at the 
451" minutes, and finally the feed composition was 
decreased by 15% at the 651'; minutes. In Figure 9, the 
solid, dashed, dash-dotted, and dotted lines represent the 
responses of the composition analyser based control, the 
PCR software sensor based control, the PLS software sensor 
based control, and the tray temperature control respectively. 

Figure 7. Predictions from the PLS model 

Predicted prcduct composations 

Figure 8. Inferential feedback control structure 

For the purpose of comparison, a tray temperature based 
distillation composition controller and a composition 
analyser based composition controller were also developed. 
In the tray temperature based composition control, a single 
tray temperature was used to represent the product 
composition. Through analysing the data shown in Figures 1 
and 2, it was found that temperature of the 8" tray (from the 
column bottom) has the largest correlation coefficient (- 
0.91) with the top product composition while temperature of 
the 2nd tray has the largest correlation coefficient (-0.93) 
with the bottom product composition. Therefore, 
temperatures of the 2nd and the 8& trays were controlled to 
indirectly control top and bottom product compositions 
respectively. At the nominal operating point (top 
composition at 95% and bottom composition at 5%). 
temperatures at the 2'Ld and the 8' trays are 86.6"C and 7OoC 

Figure 9. Responses of the composition controllers 

Due to the large measurement delay in the composition 
analyser based control, the controller has to be substantially 
de-tuned to ensure stability. This resulted in sluggish 
responses. In the tray temperature control scheme, 
substantial bias can be observed, especially after the 
introduction of the first two disturbances. This is due to the 
fact that the relationship between a single tray temperature 
and a composition can be significantly affected by process 
operating condition variations. For the PCR and PLS 
software sensor based control, much improved control 
performance are achieved. Some slight static control offsets 
can be observed especially after the introduction of the first 
two disturbances. These static control offsets are due to 
estimation bias caused by the variations in process 
operating conditions. Table 2 gives the sum of squared 
errors (SSE) of different control schemes. It can be seen 
that the PCR and PLS software sensor based inferential 
feedback control schemes perform much better than the 
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composition analyser based control and the tray temperature 
control. 

Table 2. SSE of different control schemes 
I I PCR I PLS I Comp. I Tray 1 

4. Eliminating estimatiodcontrol offsets through mean 
updating 
The PCR and PLS models were developed from process 
operational data around the nominal operating point: the top 
and bottom compositions at 95% and 5% respectively. 
When the column operating condition changes, the PCR and 
PLS model can give estimation bias. Since the distillation 
column exhibits some degrees of nonlinearity, a linear PCR 
or PLS model will inevitably posses some estimation bias, 
especially when the operating condition changes. Bias in the 
PCR or PLS model estimation can lead to static control 
offsets. This can be observed from Figure 10. In Figure 10, 
the setpoints for the top and bottom compositions were 
changed to 96% and 4% respectively at the 51" minutes and 
a 15% increase in feed rate was introduced at the 251" 
minutes, followed by a 15% increase in feed composition at 
the 451'' minutes. In Figure 10, the solid lines represent the 
setpoints, the dashed lines represent the product 
compositions, and the dotted lines represent the PCR model 
estimations. It can be seen from Figure 10 that, due to 
operating condition changes, the PCR model has estimation 
bias leading to static control offsets. 

96.5 97& 

I 
100 200 300 400 500 600 

Time (min) 

Figure 10. Responses of the PCR model based inferential 
feedback controllers without mean updating 

In this study, we use mean updating to eliminate the static 
model estimation bias and the associated static control 

offsets. In the development of a PCR or a PLS model, it is a 
usual practice to scale the model input and output variables 
to zero mean and unit variance. These process variable 
means usually reflect a particular process operating 
condition. When the process operating condition changes 
due to, for example, setpoint changes or a disturbance 
entering the process, the mapping between the scaled model 
input and output variables (based on the means of the 
training data) may also change. Here we propose to scale 
the process variables using their on-line updated means. 
When the process operating condition changes, a steady 
state detection method (e.g. Cao and Rhinehart, 1995; Abu- 
el-zeet et al., 2000) is used to detect if a new steady state 
has been reached or not. Once it is detected that a new 
steady state is reached, the process variable means are 
replaced by their means at that new steady state. The PCR 
or PLS model input output variables are then scaled using 
their on-line updated means. To use this mean updating 
approach, delayed composition measurements from 
composition analysers are required. 

Figure 11 shows the estimation and control performance of 
the PCR model based inferential feedback controller by 
using mean updating. In Figure 11, the solid lines represent 
the setpoints, the dashed lines represent the product 
compositions, and the dotted lines represent the PCR model 
estimations. Through mean updating, the PCR model 
estimation bias and the resulting static control offsets have 
been eliminated. Similar improvement has also been 
observed in the PLS model based inferential feedback 
control. Table 3 summarises the s u m  of squared errors of 
the control schemes with and without mean updating. It can 
be seen that control errors have been reduced through mean 
updating. The reduction in control errors is mainly due to 
the elimination of static control offsets as seen from Figure 
11. 

3' 100 200 300 400 500 Mx) I 
l ime (min) 

Figure 11. Responses of the PCR model based inferential 
feedback controllers with mean updating 

1200 



Vo1.69, 1991a, pp997-1009. 
Table 3. SSE of the inferential feedback control schemes Tham. M. T., E Vagi, A. J. Moms, R. K. Wood, 

‘Multivariable and multirate self-tuning control - a 
distillation column case-study”, IEE Proceedings, Pt. 0, 
Control Theory and Applications, Vo1.138, 1991b, pp9-24. 

5. Conclusions 
Studies in this paper show that the PCR or PLS software 
sensor based composition control is superior to single tray 
temperature control and composition analyser based 
feedback control where substantial measurement delay 
exists. By using the PCR or PLS software sensor, 
substantial measurement delays can be eliminated and, 
hence, the close loop control performance is improved. By 
utilising multiple tray temperatures, enhanced correlation 
between tray temperatures and the top and bottom 
compositions can be achieved. Colinearity in the multiple 
tray temperature measurements can be effectively handled 
by the PCR or PLS method. Through mean updating, static 
offsets in the PCR or PLS software sensor estimation and 
the resulting control can be eliminated. Applications to a 
simulated methanol-water separation column demonstrate 
the effectiveness of the control strategy. 
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