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Abstract—In chemical process industry, some variables
are difficult to measure on-line due to the limitation of
measurement technigues, reliability or high cost to install a
hard senser. Some measurable variables, such as product
quality , cannot be used for real-time optimization and
control due to the large time delay.The soft-sensing of these
variables is considered as an efficient method, and remains as
an open problem. A new soft sensor system is developed to
solve these problems in this work, which is based on rigorous
model by using dynamic optimization to minimize the bias
square between the model outputs and the measured ouiputs.
Compared with other soft sensor systems, the proposed soft
sensor system accurately employs the nonlinear model and
considers the constraints in the optimization. It not only is
more efficient in economic but also can be used on-line for
real-time optimisation and control. The soft sensor system is
successfully applied to estimation of the feed composition of a
pitlot heat-integrated distillation column system.

1. INTRODUCTION

1t is very important to measure or estimate the operation
variables accurately for process optimization, monitoring,
fault detection and control. In chemical process industry,
some variables are difficult to measure directly (e.g.
quality variables, feed composition variables and product
concentration variables), either because there are no
physical sensors available, or because these are too
expensive to install. Gas chromatographs and near-infrared
analysers are always used to measure the composition, but
gas chromatographs have large measurement time delays
and these measurements cannot be used for real-time
optimization and control due to the introducing of a time
delay, Furthermore, most analysers suffer from high
investment and maintenance costs. For example, it spends
more than $10 million to equip on-line analyzers, and $0.5
million to support them for a typical modern oil refinery in
one year [1].

In the last decade, studies on soft sensors have been
resumed due to developments in computer processing
capability, which reduced required time for mathematical
calculations. Soft-sensing techniques have been considered
as efficient methods and key technologies for unmeasured
process variables when hard sensors are not available or
too expensive to imnstall, Soft sensors are model-based
approach to provide on-line estimates of difficult-to-
measure variables through calculations of measurable
variables (e.g. temperatures, pressures and flow rates). A
number of estimators can be used as soft sensors, for
example Extended Kalman Filters (EKF) [2] and neural
networks [3] are commonly used.

0-7803-8730-9/04/$20.00 ©2004 IEEE

Neural networks are one of the best known black-box
soft sensor. Their complex structure makes it possible to
establish highly nonlinear correlations between input and
output variables, thus being able to represent a wide variety
of processes. Nevertheless, neural network soft sensors
need a great number of data and long time training, and the
extrapolation capacity of these soft sensors is generally
very limited.

EKF is by far the most popular algorithm for on-line
state and parameter estimation.But it has some drawbacks:
inability to handle constraints and to make physical sense
of the estimated variables, such as the component must be
positive and only between 0 and 1, and the poor use of the
nonlinear properties of models. It can also suffer from
some numerical problems and convergence difficulties due
to approximations of mode! linearization.

With the development of chemical process knowledge,
more attentions have been paid to rigorous model based
optimization, monitoring and control. In order to overcome
problems that exist in neural networks and EKF soft
sensors, rigorous model based nonlinear optimization is
extensively used to estimate state and parameter, due to
accurately employing the nonlinear mode] and considering
the constraints in the optimization. The objective function
is formulated as the sum of squared error between
measurement data and model outputs. The best estimation
can be obtained by minimizing the objective fimetion
subject to constraints of the model equations.

In this paper, a soft sensor system based on rigorous
model is developed by using dynamic optimization. The
system is described by rigorous model that is a set of large-
scale nonlinear differential and algebraic equations (DAEs).
The sequential quadratic programming (SQP) and the
orthogonal collocation methods are used to solve the
dynamic nonlinear optimization problem. The approach is
successfully applied to soft-sensing of the feed
composition of a pilot heat-integrated distillation column
system.

1L PROBLEM FORMULATION

The soft sensor is a model-based approach to infer the
process unmeasured variables. Several types of soft sensors
can be developed according to different process models.
The models may be black box or white box. If the system
states are operating over a wide range, e.g. the operation is
respect to  flexible conditions and real-time optimization
with economic benefit, continuous processes with grade
transitions and the batch process then a mechanistic model
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or rigorous model might be the best choice. Rigorous
model represents a unique insight into the behaviour of the
process, and applicability for advanced non-linear control
such as nonlinear model predictive control and real-time
optimization strategies. More and more attentions have

been paid to rigorous model based control and optimization.

In chemical process industry, the dynamic rigorous system
models are based on chemical and physical principles, and
prior knowledge. It can be described by a set of nonlinear
DAEs.

g(%,%,6,0)=0 )

where g C R™™ is the vector of mode! equations, X

denotes the time derivatives of the total state

. ~ T .
variables, ¥ = [%,¥]",x€ X CR" is the unmeasured
part of systernt state variable, ye Y < ™ is the measured

part of state variable or output variable, G e U g R*is
the vector of the given measured input variables,
0 e @ c R is the vector of the variables to be estimated
by soft sensors. For the pilot plant, ¥ involves the
measured temperatures on some trays and the distillate or

bottom flow rate. @ includes the measured feed flow rate,
reboiler duty, reflux flows and column pressure.
X represents unmeasured state variables in the model, i.e.
composttions of liquid and vapor phases, vapor and liquid
flow rates and the holdups on the trays inside the column.
0 is the unmeasured feed composition which is estimated
by the soft sensor,

If we suppose that the unknown model parameters are
theoretical identifiable, the soft sensor is to adjust the
model parameters € until reaching the minimum of the bias
between the sampled system outputs and the model
simulation outputs, as is shown in equation (2).
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To solve this problem numerically, it is necessary to
discretize the DAEs and transform them into algebraic
equations. Collocation on finite elements and multiple

shooting are two common methods for the discretization[4].

In this appreach, discretization of the DAEs is by
orthogonal collocation on finite elements [5]. After this
discretization, problem (2) is now transformed to (5);

I
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where §, € Y © R™ is the measurement process data, and
y; € Y R™ is the model output at the same sampling

instants . f is the objective function to be minimized of
the soft sensor system with a moving horizon
window(MHW) of [ time intervals. / is the length of the
MHW. The performance of soft sensor will improve when
the horizon length [ increases. However, the
computational cost also increases. The diagonal matrix

W, e K™ is the collection of weighting factors, W, is

the known covariance matrix of the measurement errors.

6" and 0 Y are the given lower and upper bounds of the
soft-sensing variables according to the prior information,

1. COMPUTATIONAL METHOD

Due to the relationship y ="¥{@) is not known explicitly,
equation (5) shows that it is a nonlinear dynamic
optimization problem with constraints of model equations
and the lower and upper bounds. Approaches to solve
dynamic optimisation problem usually use a discretization
method to transform the dynamic system to a nonlinear
programming (NLP) [4]. The approaches to solve such
problem can be classified into simultaneous strategy [6], in
which the discretization and optimization are performed
simultaneous and a huge NLP is included, and sequential
strategy, in which a simulation step is used to compute the
dependent variables and so that only the independent
variables are solved by NLP [7]. In our problem, the
sequential strategy is employed to solve the NLP for the
soft sensor system. Only the estimated parameters are
included in SQP algorithin to reduce the number of
variables in SQP, while the/ *{(m+#n) dependent variables

can be obtained by solving the model equations (6) with
the estimation value of the parameter, the gradients of
objective function and the sensitivities of dependent
variables to estimation parameter are computed via the
simulation step solution. The two-level structure,
optimization level and simulation level, computation
approach is proposed, as shown in Fig, 1.

These suppositions are made that in every time interval
i the soft-sensing value of @ ; and the inputs i, are constant

to analysis this problem. There are /* p variables to be

estimated by the soft sensor in one MHW. Objective
function and gradients are the two key components in SQP
algorithm. The objective function (@) is differentiated
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Fig. 1 A two-level calculation structure

with respect to each unknown parameter, to yield the
gradients:

70)= L0~ e W1 )= 235, 0)Wy (5, -3
J=i J=i
=10 (8)
where
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Equation (8), (9) mean that we should consider the
effect of the variation of the preceding time interval
estimated parameters on the subsequent state variables, so

J, the subscript of ¥, is only from i to [ .
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The matrix S®)=[S7®@),i=1,...7| . defined by
equation (10), is so called sensitivity matrix. As shown in
equation (10), 8$(8) is always a triangle matrix. S are
sensitivity coefficients, The sensitivity matrix coefficient is
the first derivative of the dependent state variable y with

Due to the
is not known explicitly, the

respect to the unknown parameters 6 .
relationship y="¥0)

sensitivity coefficients are implicitly calculated with the
following method.

The objective function and the gradients of the objective
function are computed in each iteration calculation.
Sensitivity coefficients of the dependent variables to
estimation parameters are computed via the simulation
model. The model equations are computed by the Newton-
Raphson algorithm. To calculate the gradients of the
objective function, only dy ; /o8, is needed to compute,

which can be obtained by the partial derivative of equation
(6) about, :

% o8 (n
o6, 3%, 99,

Then

Je, | 9%, | o8 (12)

i

& _ g)“g

where dg, [0, ,0g, /08, are the Jacobin matrixes of the

system equation to X, and @, respectively. For the system
with a high dimension of state variables, the calculation of

the inversion of the Jacobian matrix dg, /9X; will be time

consuming and ill-condition. In the practical numerical
implementation, the sensitivity coefficient is computed by
Gauss elimination of equation (13), rather than by matrix
inversion and multiplication of equation (12).

dg, 9%, dg;
o8 oK __ % 13
%, 00, o8, 43

Because the last collocation point of the dependent
vartable is the starting point of the next time interval, the
other sensitivity coefficients can be computed by iteration

(8]
IV. COMPUTATION RESULTS

The above technique is used for soft-sensing of feed
composition of an industrial size pilot plant—a heat-
integrated distillation column system. All calculations are
carried out on a personal computer using the COMPAQ
VISUAL FORTRAN 6.1 compiler. To solve the dynamic
optimization, a standard SQP solver of the IMSL library of
routine NCONG is used.

Heat-integrated distillation columns are commonly used
in the chemical industry to reduce the energy consumption
of distillation processes. In the industrial practice, both the
feed flow rate and feed composition of such columns
change significantly and frequently. It is well known that
an on-line composition measurement is usually not
possible. Since advanced control strategies, such as
dynamic real-time optimization (RTO) and nonlinear
model predictive control (MPC), need the real-time value
of the feed composition, it has to be estimated based on a
model and measurable variables such as temperatures,
pressures and flow rates.
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A. Process Description

Fig. 2 shows that the pilot plant consists of a high
pressure {HP) column and a low pressure (LP) column both
with the same diameter of 100 mm. They have a central
down-comer with 28 and 20 bubble-cap trays, respectively.
The plant can be operated in downstream, upstream and
parallel arrangements. In our problem, the plant is
constructed as parallel arrangements for separation of a
binary mixture of methanol and water. The overhead
vapour of HP column is used as the heating medium to the
reboiler of LP column. Temperature, pressure, level and
flow rate measurément instruments are equipped with the
plant, and all the signals are connected with the computer
control system.

The nominal operating conditions of the plant are listed
in Table 1.

To reach the optimal operation and satisfy the quality
constraints, four control variables are optimized on-line,
which are heat supply to the HP column, HP column reflux
rate, reflux rate and feed rate of the LP column. The
unmeasurable feed compesition should be estimated on-
line by the soft sensor.,

g

LHF

Fig. 2 Flow sheet of the heat —integrated
distillation column system

Table 1 Nominal operation conditions

HP column LP column
The number of tray, NST 30 22
Feed composition, xg[mol/mol] 0.4 0.4
Feed rate, F [/h] 19 16
Feed tray, Ng 20 16
Feed temperature, T [°C] 60 60
Overhead composition, xp 0.99 0.99
Bottems composition, Xp 0.01 0.01
Top pressure [bar] 4.659 1.028
Heat input, Q [kW] 9.95
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B. Modelling

The dynamic model of the system is developed
according to vapour-liquid equilibrium, overall and
component matertal balances and energy balance for each
tray j where the ftrays are numbered from the

reboiler (j =1) to the condenser (j = NST). The non-ideal

liquid phase is computed by Wilson model. The component
compositions of vapour and liquid phases, the vapour and
liquid flow rates, the temperature, the pressure, and the
liquid holdup are the state variables of each tray. The total
number of state variables of each tray is
NK*2+5 ( NK the number of components). For one
column the whole number of state variables
is(NK*2+5)*NST. The DAEs model is based on the

following assumptions:

*,

<+ Negligible vapour holdup,
% Ideal vapour behaviour on each tray,
#  No heat loss,

-

< Total condenser without subcooling.

Reboiler : ( j=1,i=1,...,NK)
Component balance:

dHU, 1
dt

=Lyx;; —Lix Vv (14)
Vapour-liquid equilibrium:

Yiy = kr‘,l *xi,l (15)
Summation equation:

%, =1 (16)
i=1

NE
Y =t (17)
i=1

Energy balance equation:

dHU, H}

= LHD - LI -VH] +Q, (1)
!

Internal trays: ( j=2,NST -1, i=1..,NK)
Component balance:
dHU ;x, ;

o =Loax i YV —Lyx ;- Vy  + FF xg

(19)

Vapour-liquid equilibrium:



iy~ Fim

n, == (20)
Yij — Vi j+
where
vij=kii*x; n
Summation equation:
NK
%, =1 (22)
i=1
NK
Yy =1 (23)

Holdup equation:

HU; =10° (WEIRH + HOW ; )* AR* EPS VX ;

(24)
Hydraulics and the pressure drop equation:
P, =P, +DPD,+DPH,; (25)

Energy balance equation:

calculated in one time interval. The whole state variables
number in the heat-integrated distillation column system is
1404 (27*(NST1+ NST2)=27*52=1404) . So, it's a
large-scale nonlinear system and can be solved by
conventional Newton-Raphson algorithm. Details about
this model can be found in literature [5].

C. Parameters Estimation

The available measurements of the temperatures
along two columns and some flow rates are used to
estimate the parameters. Three time scales of parameters
and variables exist in the numerical computation. The
smallest one is the three orthogonal collocation points in
one time interval of the measurement variables and the
state variables obtained by the simulation step. The middle
one is the time interval, in which the estimate parameters
and the independent variables are constants. The biggest
one is the MHW with [ time intervals. In this example, the
number of time interval / n a MHW is 20. The time
interval is 600s; and three orthogonal collocation points are
at time 76.2s, 338.1s, and 600s in one time interval. In this
work, 6 tray temperatures of the HP column and 5 tray
temperatures of LP column in the top, middle, and bottorn
of the columns, respectively, and the distillates of the two
columns are used as measurements. The objective function
15

. 20 20
IEWADY

i=l =1 I=l

3 20
i=l I=]
(30)

The feed composition soft sensor is examined m two
cases. Case A is that the feed composition keeps constant
at 0.3 mol/mol. Case B is that the feed composition has a
great change from 0.4 to 0.3( mol /mol) at 11% time
interval. Fig.3 and Fig. 4 show the results of the soft
sensor for feed composition of two cases.

o4

Feed composition melimal

dHU HE
iy L ¥ L v
T—Lj+1Hj+1 +V  Hi —LH; ijHj +FFHLF,
(26)
Total condenser: { j =NST, i =1,....NK)
Component balance:
dHU ysrX; yst
_—dr;— = VisroYinsr— —(L+ D) ygr (27
Summation equation:
NK
2 X st =1 (28)
i=t
Energy balance equation:
dHU yorH y.
—N;]rl""&“s'"r" =Visroa Hysra —(L+ DH sy (29)

The rigorous system model is a set of DAEs. To solve
this problem numerically, it is necessary to discretize the
DAEs and transform them into algebraic equations. Now,
three-point collocation on finite elements method is used.
In every time interval, each state variable has three values.
For NK =2, the number of state variables in one tray is 9.
With three collocation points, 27 state variables should be
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Fig. 3 Feed composition estimation results in case A
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Fig. 4 Feed composition estimation results in case B

V. CONCLUSION AND DISCUSSION

In this paper a nonlinear soft sensor system has been
proposed based on rigorous dynamic system model. The
soft sensor is to find the unmeasurable parameter value that
minimizes the bias between the model outputs and the
measurement outputs. It is a dynamic optimization problem
that is solved by SQP and the orthogonal collocation. For
realizing the numerical evaluation, suitable numerical
methods for the optimization and the calculation of
sensitivity coefficients are proposed. Compared with other
soft sensor systems, the proposed soft sensor system
accurately employs the nonlinear model and considers the
constraints in the optimization, It can be used on-line for
real-time optimization and control. The soft sensor system
is successfully verified in the estimation of the feed
composition of a pilot heat-integrated distillation column
system.
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To fulfill the parameter estimation by nonlinear
dynamic optimization, a major issue should be taken into
account. That is the identifiability of the model parameter.
From the point of view of optimization, it is a problem
whether the convergence to the global minimum under
different initial guesses of the model parameters. In the
practical  application, the optimal selection of
measurements is difficult and important. In our problem,
the estimation accuracy is improved by using not only tray
temperatures but also distillate rates.

For nonlinear dynamic rigorous model, the theoretical
investigation of parameter identifiability is an open
problem in the future.
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