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Abstract

Chemical processes often have many variables that are
being monitored every minute or every second. This can
vesult in “data overload” and useful information that is
buried within the collection of data is lost, Techniques that
provide a quick method to extract information from large
sets of data can prove to be very beneficial, In many cases,
however, the data collected from processes are redundant, or
highly correlated. In this paper, inferential models for
estimating product compositions are built by using Partial
Least Squares (PLS) regression, based on simulated time
series data. The PLS method removes the correlation
problem by projecting the original variable space to an
orthogonal latent space. A debutanizer column is used as a
case study and the results of the PLS method are compared
to another two multivariate statistical methods, which are
Multiple Linear Regression (MLR) and Principal
Components Regression (PCR).

1 Introduction

For product composition control of distillation columns,
it is rarely the case that measurements of product
compositions are directly used as controlled variables,
because on-line accurate measurements of compositions are
difficult (Kano et al., 1998). Most product analyzers, like
gas chromatographs, suffer from large measurements delays
and high investments and maintenance costs (Mejdell and
Skogestad, 1991).

An inferential model is often used in process control
when a measurement of the true variable being controlled is
not available in real time (Mejdell, 1990). Reasons for the
lack of real-time measurements include costs, reliability,
and long analysis times or long dead times for sensors
located far downstream (Kresta er al., 1994). The general
goals for an inferential model are the accurate prediction of
the true controlled variable and that these predictions be

0-7803-7061-9/01/$10.00 © 2001 [EEE

* arruda@cpgei.cefetpr.br  * ramos @cpgei.cefetpr.br

insensitive for the expected changes around the nominal
operating points (Kresta, 1992).

The partial least squares (PLS) regression has been
widely applied to chemometrics and chemical industries for
data analysis, system identification, and to develop
inferential models (Geladi and Kowaiski, 1986, Martens and
Naes, 1989). Inspired from principal components analysis
(PCA) and principal components regression (PCR), the PLS
regression is able to give a robust solution in the case of
collinear or correlated input variables, where the ordinary
least squares regression gives rise to the ill-conditioned
problem. The PLS regression removes correlation in the
input variable by carrying out orthogonal projections from
input space to a latent space. Linear regression is then done
in the latent space, which makes the regression solution well
defined (Geladi and Kowalski, 1986). According to Kresta,
MacGregor and Marlin (1991), the challenges for any
multivariate statistical scheme are as follows:

1. The method must be able to deal with collinear data with
high dimension, in both process or predictor variables (X}
and the product quality or predicted variables (¥).

2. The method must reduce the problem dimension
substantially and allow simple graphical interpretation of
the results.

3. If both process (X) and product quality (Y) variables are
present, it must be able to provide a good prediction of Y.

Principal Components Analysis (PCA) and Partial Least
Squares (PL.S) are multivariate statistical methods that
address the problems mentioned above. PCA is used to
explain the variance in a single data matrix by finding
combinations of the original variables that represent major
trends in the data set. The first principal component (PC) is
a linear combination of the columns of X that describes the
direction of the greatest degree of variability in the data.
The second PC is orthogonal to the first PC and describes
the direction of the greatest amount of the remaining
variability after the first PC has been calculated. Principal
components continue to be calculated until they explain an
acceptable amount of variation in the X matrix. With highly
correlated data sets, the number of principal components
required to explain most of the variation is much less than
the number of original variables.

Many statistical methods are available for developing
regression models. These methods include Multiple Linear
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regression (MLR), Ridge Regression (RR) and Principal
Components Regression (PCR). However, the method that
appears to best address the problem of high dimensionality
and collinearity within the X and Y blocks is Partial Least
Squares (PLS). PLS is similar to PCA except that it
simuitaneously reduces the dimension of the X and Y space
to find principal components (often referred to as latent
variables in PLS) for the X and Y spaces, which are most
highly correlated (Kresta ef al., 1991).

PLS regression can be expected to perform better than
other regression techniques because of the stability of the
predictors or principal components, If the number of
variables is too high, the uncertainty of the estimated
parameters can become the dominating factor in the
variability of the predictors. By using PLS, components are
selected that give the maximum reduction in the covariance
of the data. In other words, PLS will give the minimum
number of variables required to maximize the covariance
between the predictor and predicted variables (Hoskuldsson,
1988).

The organization of this paper is as follow. Section cne
discusses the importance of using PLS regression. Section
two addresses the problem definition and provides details
about the debutanizer process. Section three presents the
theoretical foundation of muitivariate statistical methods.
Section four presents the results with some comments and
the final section gives some conclusions.

2 Problem Definition

The problem addressed in this paper is to buiid
inferential models for estimating distillation product
compositions based on measurements of process variables,
such as tray temperatures, reflux flow rate, condenser
pressure, and rteboiler heat duty by using multivariate
statistical methods. In this section, the example of a
debutanizer column and the conditions of steady state and
dynamic simulations are illustrated. The inferential models
will estimate the mole fraction of pentane (Xcs) in the
distillate stream (butane - Xc;). The amount of these
components is the measure normally used to determine the
distillate stream quality.

2.1 Application to a Chemical Process

The steady state and dynamic operations of a
debutanizer column were simulated. Hysys.Plant release 2.2
(Hyprotech 2000), which is a rigorous process simulator,
was used to simulate the debutanizer process. Hysys.Plant is
a fully integrated steady-state/dynamic simulator of
chemical and petrochemical processes that allows powerful
dynamic modeling capabilities and advanced process
control strategies. The schematic diagram of the column is
shown in Figure 1. The column consists of 17 theoretical
trays including the condenser and the reboiler. The diameter
of the column is 2.81 m. The liquid holdups of the
condenser and the reboiler are 2.15 m’ and 3.75 m’,

respectively. The feed stream is a mixture of propanes
(small amount), butanes and pentanes and enters the column
at the 8™ tray. The total flux rate is 8400 Kg/h. Two
temperature control loops (TIC-1 and TIC-2), and one
condenser pressure control locp (PIC-1) were used in the
dynamic simulations. The temperatures on the 4™ and 12"
trays and condenser vessel pressure were used as contrelled
variables. Reboiler heat duty, condenser duty, and reflux
flow rate were used as manipulated variables. It was used
single-loop PID centroliers since this is the most common
choice in practice, and their parameters were determined by
the Ziegler-Nichols method (Ziegler and Nichols 1942),
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Fig. 1. Schematic diagram of the debutanizer column.
2.2 Condirions of Dynamic Simulations

Appropriate data must be chosen for the reference or
calibration set and proper scaling must be used before the
principal components analysis can be done. This is critical
for the successful application of the procedure (MacGregor
et al. 1991). The reference set should consist of information
that contains as much of the variance as possible that
ultimately leads to successful operation. The conditions of
the simulated data used for building the composition
inferential models are summarized in Table 1. The
disturbances were varied individually and in combination.
The data were obtained through open-loop conditions. In
other words, the column is assumed to operate under
feedback control. However, the controllers use actual
values, that is, there is no feedback from estimated values.
In the simulations, all variables were measured every
minute. Normal distributed random noise of magnitude
0.2°C was added on all temperatures. The calibration and
validation sets were obtained under different magnitudes
and combinations.
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Table 1: Debutanizer Simulation Conditions

Steady State Disturbance
Variable Conditions Magnitude
Inputs
Feed Flowrate 10.000 kg/h t+ 12%
Feed Temperature 137.90°C + 10%
Feed Composition
Butanes 0.65 + 10%
Pentanes 0.35 + 10%
Manipulated Variables
Reboiler Duty 4.886E+06 ki/h 8%
Condenser Duty 3.643E+06 ki/h + 6%
Reflux Flowrate £.400 kg/h + 6%

3 Multivariate Statistical Methods
3.1 Multiple Linear Regression (MLR)

According to Geladi and Kowalski (1986), the multiple
linear regression method can be state as follow. Features are
measured for m variables x; {j=1 through m) and for a
variable y with the goal to establish a linear or first-order
relationship  between them. This is represented
mathematically as:

y=x‘b+e 3.1

where x” is a row vector of independent variables, b is a
column vector of sensitivities or regression coefficients and
e is the scalar residual error.

The preceding equations describe MLR for only one
sample and one dependent variable. MLR can be extended
to more than one sample as well as more than one
dependent variable.

While multiple linear regression is available within
many computer software packages and it is fairly simple to
calculate, caution must be taken before using it (Walpole,
and Myers, 1993). This method often fails because X is ill-
conditioned. If there is a great deal of correlation or
collinearity within the variables of X, the solution of B will
be unstable. In the case of instability, slight changes in X
can produce completely different results. Although the
calibrations may fit the data very well, they are typically not
useful for the prediction of new samples (Wise and
Gallagher, 1998). Also this method will fail if there are
more variables (columns) than samples (rows). In this case,
{XTX )” would not exist.

3.2 Principal Components Regression

Principal Components Regression (PCR) is one way to
deal with the problem of ill-conditioned matrices {Naes and
Martens, 1988; Martens and Naes 1989; Hoskuldsson,
1996). Instead of regressing the system properties on the
original measured variables, the properties are regressed on
the principal component scores of the measured variables,
which are orthogonal and, therefore, well conditioned, Thus,
X* is estimated as:

xt=paxTn)'r7 3.2

where T is the matrix of principal component scores and P
is the matrix of eigenvectors of the covariance or correlation
matrix (Wise and Gallagher, 1998). T and P are determined
from principal component analysis decomposition on X.

As in Principal Components Analysis (PCA), the
number of principal components to retain in the model must
be determined. The purpose of the regression model is to
predict the properties of interest for new samples. Thus, it is
possible to determine the number of Principal Components
(PCs) that optimizes the predictive ability of the model. This
is typically done by cross-validation, a procedure where the
available data is split between training and test sets. The
prediction restdual error (PRESS) on the test samples is
determined as a function of the number of PCs retained in
the regression model formed with the calibration data. The
procedure is usually repeated several times, with each
sample in the original data set being part of the test set at
least once. The total prediction error over the entire test sets,
as a function of the number of PCs, is then used to
determine the optimum number of PCs, i.e. the number of
PCs that produces minimum prediction error. If all PCs are
retained in the model, the result is identical to that for MLR,
at least in the case of more samples than variables. In some
sense, it can be seen that the PCR model converges to the
MLR model as PCs are added (Wise and Gallagher, 1998).

3.3 Partial Least Squares (PLS)

Partial Least Squares (PLS) regressicn (Geladi and
Kowalski, 1986; Lorber et al., 1987; Martens and Naes,
1989; Hoskuldsson, 1996) is related to both PCR and MLLR
and can be thought of as occupying a middle ground
between them. PCR finds factors that capture the greatest
amount of variance in the predictor variables (X). MLR
seeks to find a single factor that best correlates predictor
variables with predicted variables (¥). PLS attempts to find
factors, which do both, i.e. capture variance and achieve
correlation. It is commonly said that PLS attempts to
maximize covariance (Wise and Gallagher, 1998). The
properly scaled X and Y blocks are decomposed as follows:

A

X=TP" +E=) 1Pl +E 3.3
=1
¥4

Y=UQ" +F =) u,q) +F 34
a=t

One of the common methods of calculating PLS is
known as the NIPALS algorithm, which stands for non-
linear iterative partial least squares. This algorithm
calculates a matrix of scores (T) and a matrix of loadings
vectors (P) for the X block in the same manner as PCA and
PCR. An additional set of vectors, known as the weights
(W), is calculated and used to maintain orthogonality in the
scores (Wise and Gallagher, 1998). Scores and loadings, U
and (2, respectively, are also calculated for the Y block
because the Y block may have more than one variable. The
steps carried out in the NIPALS algorithm to obtain the PLS
decomposition are the followings (Kresta er al., 1991):
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. Mean center and scale X and Y
. Set u equal to a column of ¥
. w'=u"X/u"u (regress columns of X on u)
. Normalize w to unit length
. t=Xw/ww (calculate the scores)
g =Y (regress columns of ¥ on 1)
. Normalize g to unit length
. u=Yg/q"q (calculate the new 1 vector)
. Check convergence: if YES to 9, if NO to 2
. X loadings: p=X"t/f"t
10. Regression: b=u"t/t"t
11. Calculate residual matrices: E=X-tp’ and F=Y-btq"
I2. If additional PLS dimensions are necessary then replace
X and Y by E and F and repeat steps | to 9.
Iterations continue until a stopping criterion is satisfied, or X
becomes the zero matrix.

It can be shown that the matrix inverse formed by using
PLS can be written as (Wise and Gallagher, 1998):

xt=wEw)ylatny'rT 35

where W, P, and T are calculated as above. It also can be
shown that weight vector, w, is the eigenvector of the
weighted covariance matrix, X"YY'X (Hoskuldsson, 1988).
The first weight vector, w,, is the eigenvector of the
weighted covariance matrix associated with the largest
eigenvalue. The second weight vector, w;, is the eigenvector
of the weighted covariance matrix with the next largest
eigenvalue, and so on.

b == O

o go =1 O Lo b

3.4 Model Evaluation

The models can be evaluated by their ability to fit the
calibration data and to predict new samples. The root-mean-
square error of calibration (RMSEC), which gives a
measure of how well the model fits the data, can be

calculated as follow:
N 2
206-v) 36

i=]

RMSEC =
n

The root-mean-square error of prediction (RMSEP),
which gives a measure of the ability of the model to predict
new samples, can be calculated exactly as in Equation 3.6
except that the estimates j are based on a previously

developed model, not one in which the samples to be
predicted are included in the model building.

3.5 Pretreatment of Data

Appropriate data must be chosen for the reference or
caiibration set and proper scaling must be used before the
principal components analysis can be done. This is critical
for the successful application of the procedure (MacGregor
et. al, 1991). The reference set should consist of
information that contains as much of the variance as
possible that uitimatety leads to successful operation. If the
reference set does not contain enough variance, the analysis
may predict faults too often, and if the reference set contains

too much variance, a fault may be overlooked. In industrial
applications the reference set will come from past data.

The choice of scaling can also be somewhat
cumbersome. The variables that contain the greatest amount
of variance will be the most dominant in the first principal
component. In other words, variables that have values
numerically larger than other variables will have a greater
significance in the model. This can be avoided by scaling
the data to have a zero mean and unit variance. Other
methods of scaling have been studied where physical
conditions cause certain variable to be more indicative of
quality. If some physical conditions are known to be very
important, those variables may be scaled to have a greater
variance than the rest of the variables. MacGregor, Kresta,
and Marlin (1991) investigated several scaling approaches
and made the following observations: “If the inner-
relationship between the group of variables must be
maintained and they are measured in the same units, then
the same scaling factor must be used for the entire group.
When the variances are almost the same size, then small
adjustments in the scaling have an insignificant effect on the
results”.

4 Results

The output variable to be estimated was the mole
fraction of the heavy key component (pentanes) in the
distillate product (Xcs). For building the inferential models,
calibration and validation data were obtained by applying
disturbances on the variables summarized in Table 1. The
predictor variables used to build the models were the
temperatures on the 2™, 4%, 6", 8%, 10™, 12™, and 14™ trays,
also top and bottom temperatures, reflux flow rate,
condenser pressure, and reboiler heat duty. The data sets
were scaled to have zero mean and unit variance because the
variables have different units associated with them. The
estimation results during the simulations, for all methods,
are shown from Figures 2 to 7.

It can be seen from Figure 8 that the MLR models show
the smallest RMSEC, the error of calibration. This indicates
that, as expected, the MLR model fits the data best because
this method uses all the factors. However, it can be noted
from the RMSEP, error of prediction, that the MLR does not
predict the best. Here the best models were obtained by PLS
and PCR methods. In practice, PCR and PLS generally have
similar performance though PLS is usually somewhat better.
These results can be based on the fact that the PCR method
finds factors that capture the greatest amount of variance in
the predictor variables, MLR method seeks to find a single
factor that best correlates predictor variables with predicted
variables, while PLS method attempts to find factors, which
do both, i.e. capture variance and achieve correlation and
can be expected to perform better than other regression
techniques because of the stability of the predictors or latent
variables. The optimum number of principal components
(PC) and latent variables (LV) were determined by cross-
validation.
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Fig. 2. Estimation results from the calibration set for the pentane
molar fraction (Xcs) in the distillate stream using MLR method.
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Fig. 5. Estimation results from the validation set for the pentane
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Fig. 7. Estimation results from the validation set for the pentane
molar fraction (Xcs) in the distillate stream using PLS method.
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Fig. 8 Calibration {RMSEC) and validation (RMSEP) errors for
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5 Conclusions

In the present work, inferential models, which can
estimate the product compositions of a debutanizer column
was built by using multivariate statistical methods, such as
multiple lincar regression (MLR}, principal compenents
regression (PCR), and partiai least squares regression (PLS).
If a system to be identified has correlated inputs, ordinary
least squares methods are ill defined and cannot give a
" robust process model. PLS has shown to be a very powerful
approach to building such models when there are large
numbers of highly correlated measured variables. The
reason why the PLS estimator performed so well, in the
debutanizer case, is that there is a very close relationship
between the predictor variables and composition. By
retaining all measurements without overfitting the data, PLS
is able to use all relevant information from the calibration
sets, and gives very good predictions on the validation sets.
Future refinements of the inferential models should include
on-line updating and robust checking of the data and the
estimator performance before using them in inferential
control loops.

Acknowledgements

We are grateful for the financial support from the
Brazilian National Agency of Petroleum (ANP) through its
petroleum and gas human resource development program
(PRH-ANP-FINEP/MME/MCT 10A CEFET-PR).

References

Geladi, P. & Kowalski, B. (1986). Partial Least-Squares
Regression: A Tutorial. Analyt. Chim. Acta, 185, 1-17.

Hoskuldsson, A. (1988). PLS Regression Methods. Journal
of Chemometrics, Vol. 2, 211-228.

Haskuldsson, A. (1996). Prediction Methods in Science and
Technology. Thor Publishing, denmark.

Hyprotech (2000). Hysys.Plant release 2.2, Calgary,
Canada.

Kano, M., Miyazaki, K., Hasebe, S. & Hashimoto, 1. {(1998).
Inferetnial Control System of Distillation Compositions
Using Dynamic Partial Least Squares Regression.
Proceedings of 5% IFAC Symposium on Dynamics and
Conrrol of Process Systems (DYCOPS-5) Corfu, Greece,
June 8-10, 377-386.

Kresta, I.V., Marlin, T.E. & MacGregor, J.F. (1991). A
General Method for the Development of Inferential Control
Schemes Using PLS. Preprints of 4" International
Symposium on Process Systems Engineering (PSE), Vol. I,
14.1-14.14, Quebec, Canada.

Kresta, J.V. (1992). The Application of Partial Least
Squares to Problems in Chemical Engineering. Ph.D.
Thesis, Dept. of Chemical Engng., MacMaster University,
Canada.

Kresta, 1LV., Marlin, TE. & MacGregor, J.F. (1994).
Development of Inferential Models Using PLS. Computers
Chem. Engng., Vol. 18, No. 7, 597-611.

Lorber, A., Wangen, L.E. & Kowalski, B.R. (1987). A
Theoretical  Foundation for the PLS Algorithm. J.
Chemometrics, 1 (19).

MacGregor, J.F., Marlin, T.E., Kresta, J. & Skagerberg, B.
(1991). Multivariate Statistical Methods in Process Analysis
and Control. Proc. of the Chemical Process Control
Conference CPC-1V, 8. Padre Island, Feb. 18-22.

Martens, H. & Naes, T. (1989). Multivariate Calibration.
Wiley, New York.

Mejdell, T. (1990). Estimators for Product Composition in
Distillation Columns. Ph.D. Thesis, The Norwegian Institute
of Technology, University of Trondheim, Trondheim.

Mejdell, T. & Skogestad, S. (1991). Estimation of
Distillation Compositions from Multiple Temperature
Measurements Using Partial-Least-Squares Regression. Ind.
Eng. Chem. Res., 30, 2543-2555.

Naes, T. & Martens, H. (1988). Principal Component
Regression in NIR Analysis: Viewpoints, Background
Details and Selection of Components. J. Chemometrics, 2.

Walpole, R.E. & Myers, RH. (1993). Probability and
Statistics for Engineers and Scientists. (5™ ed.) Englewood
Cliffs, NJ, Prentice Hall.

Wise, B.M. & Gallagher, N.B. (1998}, PLS Toolbox 2.0
Manual. Manson, WA, Eigenvector Research, Inc.

Ziegler, J.G. & Nichols, N.B. (1942). Optimum Settings for
Automatic Controllers. ASME Trans., 64, 759-768.

3727



