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Abstract - In industr?, t o d q  many producfs are soldfor 
their efficacy rather than their chemical composition. There 
are several key attributes within the coating industrv such 
as, Anchorage, Seal strength etc., which characterize the 
quality of the final product and are features used by the 
company to promote the sale of the product. Such qualify 
variables (dependent variables) however may i.ivolve 
measurement difficulties. The df$culties can be due to a 
variety of reasons, including: ( I )  Reliabilify of on-line 
sensors. (2) Lack of appropriate on-line instrumentation. In 
the coating process off-line laboratory tests dett:nnine 
product qualify measurements. However, such laboratory 
analyses introduce dela-vs in the measurement if key 
perjormance indicators. This can result in a signz@cant 
economic loss’ if the analysed product fails the quality 
conhol test. An improved monitoring system is required 
therefore to determine product quality online and miviniise 
commercial wastage. To facilitate this, advanced 
moniroring and control or optimization techniques require 
inferred measurements, generated with correlations ?om 
readily available process variables (indep,mdent 
variables). Although inferential models are widely used in 
industr?,, only a few techniques for inferential model 
development are discussed in the open literature. This 
paper therefore will present an improved systematic 
approach for the development of inferential models using 
soft computing systems and demonstrate the methodology 
by inferring the ‘Anchorage ‘ of polvmeric-coated 
substrates (i.e. Tpek orpaper) in the coating industv. 

Keywords: Inferential measurement, Principal Component 
Analysis (PCA), ANFIS. 

1 Introduction 
In striving towards computer automation, industries are 

constantly seeking effective tools to monitor and control 
increasingly complicated processes. In many chemical or 
manufacturing processes it is often difficult to measure or 
estimate some important process variables due to the 
limitations of process technology or measurement 
techniques. These hard-to-measure variables sometimes 

* 0-7803-8566-7/04/%20.00 0 2004 IEEE. 

referred to as dependant variables frequently, represent 
product quality and are of direct economic interest. They 
are also the key indicators of process performance and are 
normally determined by off-line sample analyses in the 
laboratoly. A significant delay (often several hours) 
however can be incurred by laboratory testing and although 
the product quality can be determined after this delay, it is 
often too late to make timely adjustments resulting in a 
significant economic penalty. Also automatic control and 
optimisation schemes cannot he implemented and as a 
result, process performance may be degraded. In such cases 
an estimate of the dependent variable may be obtained from 
an inferential model. Such models, also known as ‘soft 
sensors’ can be used to obtain a regression model between 
easily obtained measurements (independent variables) and 
quality variables (dependent variables). 

Generally speaking, there are mainly three kinds of 
approaches to building inferential models: mechanistic 
modelling (first principles) [l], statistical regression 
methods [2] and artificial intelligence modelling [3]. More 
recently hybrid soft computing models, based on a 
combination of neural, fuzzy and evolutionary computation 
technologies, have been applied to a number of 
classification, prediction, and control problems [4, 51. The 
successful development of inferential models, often 
referred to as ‘soft-sensors’, depends largely on the quality 
and nature of data used in model development. It has been 
shown that complex relationships in industrial processes 
can be identified through the use of artificial neural 
networks [6 ,  71. However, in many processes there exist 
interdependencies between process variables and in such 
situations the multi-collinearity of the data needs to be 
examined. If the input data are highly collinear, which is 
typical in many manufacturing processes, the use of the 
original process data in model development will result in an 
ill-conditioned problem. Qin et al. [SI illustrates how 
collinearity results in a large prediction variance using 
neural networks. Another disadvantage of neural networks 
is the iterative procedure of network training and regression 
refinement. The accuracy of a neural network model may 
also be influenced by altering the topology (structure) and 
parameters of the network, therefore obtaining the best 
architecture may be time-consuming and dependant on the 
modeller’s experience. A further problem is that of 
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overfitting which results in poor generalization. Evidently 
there are several pitfalls of the current inferential modelling 
techniques that need to be taken into careful consideration 
and addressed when developing an inferential measurement 
system. This paper aims to overcome the negative aspects 
highlighted above and provide a more systematic approach 
for the successful development of robust inferential models 
for industry. 

The paper is organised as follows: Section 2 provides an 
overview of the methodology employed in this work. 
Section 3 discusses the development of a Principal 
Component Model. Section 4 discusses the Fuzzy Inference 
System developed and experimental results are presented. 
Finally, conclusions are drawn in Section 5. 

2 Methodology 
The proposed approach is addresses some of the 

problems that currently exist in the area of inferential 
modelling through the fusion of statistical and artificial 
intelligence models. A Principal Component Analysis 
(PCA) model is combined with a neuro-fuzzy model to 
generate a hybrid PCA-ANFIS approach for the 
development of inferential measurements for monitoring 
product quality in a manufacturing process. The neuro- 
fuzzy model employed incorporates the pattern recognition 
capabilities of neural networks with the transparent 
modelling advantages of fuzzy logic. This form of neuro- 
fuzzy approach provides a means of training a family of 
membership functions to emulate a complicated (e.g. 
nonlinear), multi-dimensional mapping function. The 
neuro-fuzzy application of choice for this paper is ANFIS 
[9]. To address the issue of multi-collinearity within the 
process data, a principal component analysis (PCA) 
algoritbm is incorporated into the inferential model 
architecture. 

The central idea of PCA is to reduce the dimensionality 
of a data set which consists of a large number of 
interrelated variables, while retaining as much variation as 
possible in the original data set [lo]. This is achieved by 
transforming to a new set of variables, i.e. Principal 
Components (PCs), which are uncorrelated, and are ordered 
so that the fust few retain most of the variation present in 
all of the original variables. In developing a PCA 
initialisation model, the process data can be adequately 
described using far fewer parameters than the original 
variables with no significant loss of information. The issue 
of collinearity in the process data is also eliminated. To date 
no formal procedure exists however for the fusion of these 
modelling techniques discussed. For example, the criterion 
for selecting the adequate PCs to retain from PCA are very 
much ad hoc, whose justification is still mainly that they 
are intuitively plausible. Therefore, in this paper a more 
concise statistical method for PC selection is adopted. Once 
the number of principal components is chosen that 
sufficiently represents the original data set, regression can 
be performed to develop a correlation model. As an 
altemative to using the original variables as inputs to 

ANFIS, the selected principal components are used from 
the PCA algorithm. The PCA-ANFIS architecture 
developed is illustrated in Figure 1. 
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Figure 1. Architecture ofPCA-ANFIS for inference of 

In this case study the methodology is demonstrated by 
inferring the 'Anchorage' of polymeric-coated substrates 
(i.e.Tyvek or paper) in the coating industry. The source of 
training and testing samples is from the process data 
records, which are recorded from the supervisory control 
and data acquisition (SCADA) system, and the 
corresponding laboratory analysis. Several hours of process 
data was collected on all recorded variables. The dataset 
consisted of 11 variables and 600 observations representing 
the entire range of operating conditions for the product 
under consideration. Data on 'Anchorage' (i.e. quality 
variable) was based on measurements in the laboratory 
using a novel test method discussed in [ l l ] .  The data set 
was centered, scaled and checked for outliers. These 
unusual observations were detected using the statistics 
presented in [IO]. Those observations whose test statistic 
deviated by more than three standard deviations from the 
mean were deleted. The total number of outliers deleted 
was 27. After deletion of outliers, the remaining data set 
had (573 obsersations x 11 variables) in the data matrix. 
The following sections discuss the development procedure. 

product quality. 

3 Development of PCA Algorithm 

The successful development of any inferential 
measurement system depends largely on the quality and 
nature of data used in the model development. In many 
industrial applications [12, 131 there exist 
interdependencies between process variables. In such 
situations the multi-collinearity of the data needs to be 
examined. If the input data are highly collinear, which is 
typical in many processes then using the original data for 
regression will result in an ill-conditioned problem. PCA is 
used to address multi-collinearity problems. It produces a 
compressed statistical model that gives linear combinations 
of the original variables that describe the major trends in a 
dataset. This is achieved by transforming to a new set of 
variables, i.e. Principal Components (PCs), which are 
uncorrelated, and which are ordered so that the first few 
retain most of the variation present in all of the original 
variables. 

Mathematically, PCA relies upon an eigenvector 
decomposition of the covariance matrix or correlation 
matrix of the process variables. For a given dataset, X, 
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mean centered and scaled with m rows and n columi;, with 
each variable being a column and each sample a row, the 
covariance matrix of X is estimated by (n-l)-’XTX. The 
NIPALS (noniterative partial least squares) algorithm was 
first introduced to compute the principal componen:s in a 
sequential manner when the number of variables is large. 
The number of principal components that provide an 
adequate description of the data can he assessed using 
several methods [14]. PCA decomposes the data matrix X 
as the sum of the outer products of vectors ti and pi plus a 
residual matrix E : 

T T  T 
1 1  2 1  k k  

X = t  p + t  p +_..+ t p +E (1) 

Here k must he less than or equal lo the smaller dimension 
of X, i.e. k 5 min {m, n } .  The ti vectors are known as 
principal component scores and contain information on 
how the samples relate to each other. The pi vectors are 
known as loadings and contain information on hc.w the 
variable relate to each other. In the PCA decomposition, the 
pi vectors are eigenvectors of the covariance matrix, i.e. for 
each pi 

COY (X) pi= h pi (2) 

where h, is the eigenvalue associated with the the 
eigenvector pi. The ti form an orthogonal set (t:tj =I 0 for 
i8), while the pi are orthonormal (p?pj = 0 for i#j, pTpj = 

1 for i=j). Note that for xi and any ti, P pair 

Xjp=tj (3) 

i.e., the score vector ti defined by P is the linear 
combination of the original variables. Another way to look 
at this is that the ti are the projections of X onto the pi. The 
pi are arranged in descending order according to the 
associated 4. The h, are a measure of the amount of 
variance described by the pi. Because the pi ;ne in 
descending order of &, the first pair capture the largest 
amount of information of any pair in the decomposition, 
and each subsequent pair capture the greatest possible 
amount of variance at that step. The variance of each pair 
can be accumulated and compared with a given constant 
(e.g. 8S%, 95%) to choose the principal Components of all 
the pairs. Using this PCA approach, the data can be 
adequately described using far fewer parameters than the 
original variables with no significant loss of infomation 
and the issue of collinearity in the data is eliminated. Once 
the number of principal components is chosen that 
sufficiently represents the original data set, regression can 
he performed to develop an inferential model. As an 
alternative to using the original variables as inputs to the 
inferential model, the selected principal components scores 
are thus used from the PCA algorithm. 

During initial analysis of the process under study, it was 
identified from process knowledge that 11 Candidate 
variables are related in some degree to the quality variable. 

These 11 variables may contain an overlap of 
information on the final product quality and because they 
are possibly correlated to each other when these variables 

are used as inputs to build an inferential model, some 
information of no use is obtained from them. Thus, L great 
number of data sets may he compressed in a manner that 
retains the essential information and is more easily 
displayed than each of the process variables individually. 
Here, by referring to the 11 variables as the matrix X (size 
573x1 I), then this procedure can he summarised as follows: 

1) Perform PCA on matrix X 
2) Principal Component Selection from PCA 

The chosen numbers of principal components together with 
the desired output y are employed in developing the 
inferential model. Table 1 lists the results of the PCA. The 
next section describes the rationale for choosing a subset of 
principal components for model development. 

Table I. The result of PCA 
Percen variance captured by PCA model 

Variance Total vanannce 
PC No ElgeWl”e (%I 1%) 

1 
2 
3 
4 
5 
6 
7 
9 
9 
10 
1 1  

9 297 
1935 
0 349 
0 216 
0 093 
0 057 
0 027 
D o l l  
0 007 
0 005 
0 OOM 

75431 
17591 
3 181 
1 0G3 
0 843 
0 523 
0 253 
0 096 
0 063 
0 M9 
0 OM 

75431 
93 022 
96 203 
98 167 
89010 
99 533 
99 796 
89 883 
99 946 
99 906 
100 

3.1 Principal Component Selection 

Many of the rules used for choosing the number of 
principal components, m to retain, instead of p original 
variable are very much ad hoc rules-of-thumb, whose 
justification is still mainly that they are intuitively 
plausible, and that they work in practice [IO]. The most 
obvious criterion is to select a (cumulative) percentage of 
total variation to which it is desired that the selected 
principal components (PCs) should contribute, for example 
70% to 95%. The required number of PCs is then the 
smallest number of PCs for which this chosen percentage is 
exceeded. Principal components are successively chosen to 
have the largest possible variance, and the variance of the 
jth PC is 5. Furthermore, 

P P Ed= CS” (4) 
j 4  j=l 

that is the sum of the variances of the PCs is equal to the 
sum of the variances of the elements of X. The definition of 
‘percentage of variation accounted for by the first k PCs’ is 
therefore 

Choosing a cut-off, I*, usually in the region between 
70% and 95%, and retaining m PCs, where m is the smallest 
integer, k, for which t2>t*, provides a rule which, in 
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practice, preserves in the first in PCs most of the 
information in X. The best value for t* will generally 
become smaller as p increases, or as n, the number of 
observations, increases [lo]. 

The ‘scree’ graph discussed and named by Cattell [I51 
is another rule available for PC selection. The way in which 
Catell formulates the rule is to look for the point beyond 
which the scree graph defines a more-or-less straight line, 
not necessarily horizontal. The first point on the straight 
line is then taken to be the last component to be retained. 
Cattell’s formulation, where we look for the point at which 
lk.l - lk becomes fairly constant for several subsequent 
values is perhaps less subjective but still requires some 
degree ofjudgement. 

Table 2. Eigenvalue analysis via Catell’s formulation 

Component Numbel. k 

ElQomaluP. lr 8 297 1935 0.349 0.215 0 093 0 051 

75431 93022 95203 98.157 99010 99533 

To give confidence that the correct number of principal 
components have been chosen, an approach similar to that 
of cross validation has been investigated in this study. The 
number of terms in the estimate for y, corresponding to the 
number of PCs, is successively taken as 1,2, . . . ., and so on, 
until overall prediction is no longer significantly improved 
by the addition of extra terms (PCs). The number of PCs to 
be retained, m, is then taken to be the minimum number 
necessary for optimal prediction. In this work a 
combination of all three techniques is adopted to decide the 
number of PCs to be retained. The first two rules are used 
to generate a subset of PCs. The subsets of PCs arc then 
subjected to cross validation to select the number of PCs 
that give optimal prediction results when used in 
regression. 
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Figure 2. Scree graph from PCA 
Using the criterion described above the adequate 

number of PCs to be used in model development can be 
determined. The first criteria, where a cut-off limit ( P )  
corresponding to the cumulative percentage of total 
variation is decided, was adopted initially. The choice o f f *  
is often selected heuristically. One approach is to use 
Jolliffe’s criteria [IO] of h = 0.7 (i.e. percentage of variation 
accounted for = 70%) to determine which PCs to retain. If 
this criterion is applied to the results of PCA in this work, it 

CmvonEntNYmber I * ,  

would suggest that one PC should be retained. It is unusual 
however that one PC contains enough information to 
adequately describe the original data set. Various cut-off 
limits are also suggested by others [I61 ranging from 70%- 
95%, which when applied to this particular problem would 
affect the number of chosen PCs significantly. This 
highlights the subjectiveness of this approach. By adopting 
Cattell’s formulation and plotting the scree graph, shown in 
Figure 2 ,  the number of PCs to be retained increases. 

From a general observation of the scree graph, it can be 
clearly seen that beyond three or four PCs lie on a more-or- 
less straight line. Table 2 shows the first six eigenvalue 
analysis using Catell’s formulation and the results also 
indicate that after four PCs, I,, - lk becomes fairly constant 
for several subsequent values. Both three and four PCs 
therefore were retained and cross validation carried out to 
determine which set gives better prediction results. After 
cross validation it was concluded that three PCs gave 
optimal results, therefore three PCs were retained and used 
as inputs for the inferential model described in the next 
section. The new dataset used in the development of the 
fuzzy inference system consisted of (573 observations x 3 
principal components). 

4 Adaptive Network-Based Fuzzy 
Inference System (ANFIS) 

The specific neuro-fuzzy system that is adopted in this 
work for prediction of product quality in the coating 
industry is ANFIS [9]. ANFIS has proven to be an excellent 
function approximation tool and uses a hybrid leaming 
algorithm that combines the back propagation gradient 
descent and least squares methods to create a fuzzy 
inference system whose membership functions are 
iteratively adjusted according to a given set of input and 
output data. 

The furry model is based on a first order Takagi- 
Sugeno-Kang (TSK) architecture that is generally 
composed of k rules of the form 

Rulei:IFx, is& andx2isAj2 .._. andx,,isA, 

where XI, XI, . . ., x, are antecedent variables, any y is the 
consequent variable. A;,, Aj2, ..., and Ai,  are fuzzy sets 
defined over the domains of the respective antecedents. bj,, 
bji, ..., b, are constant coefficients that characterize the 
linear relationship defined by the itb rule in the rule set, i=l 
, 2 ,, , ., k. A TSK fuzzy model is a computationally efficient 
platform that is well suited for implementation of non- 
linear associations through the construction of many 
piecewise linear relationships [17]. I t  is beyond the scope of 
this paper to give a detailed discussion on the ANIFS 
architecture and its operation however in the literature 
many reviews and articles are available [18, 191. 

As discussed earlier, an altemative to using the original 
variables as inputs to ANFIS, the selected principal 
components are used from the PCA algorithm. Figure 3 

THENy = b;o+bjixi+b;Sz+ ...+ b;,,~“ 
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illustrates the proposed network structure. The remaining 
sub-sections discuss the model development phase and the 
validation results obtained. 

W 

LeS., - 2  urcla LW.l  

Figure 3. ANFIS Structure 

4.1 Model development 
To illustrate the performance advantage by the 

incorporation of a PCA model, an ANFIS model using the 
standard approach (i.e. original process variables as inputs) 
was developed to enable comparisons. First 60% of the 
dataset is used for training and the remaining used for 
validation. ANFIS attempts to minimise the mean squared 
error between the network outputs and the desired output as 
the data points in the training set are presented. The PASE is 
defined as: 

where yo and y,  are the actual and predicted responses, 
respectively, and N is the total number of predictions. 
Before training can occur, an initial FIS is created using the 
grid partition method [201. 

As discussed earlier as an altemative to using the 
original variables as inputs to the inference system, the 
principal components from the PCA model are adopted. 
This PCA-initialised inference system is designed with 
three inputs: Principal component 1, Principal component 
2, Principal component 3, and a single output-Anchorage. 
After several trials, use of three membership functions for 
all inputs is found to attain hest results. Each input has 
generalized bell-shaped membership functions (MF). The 
results are presented in the following section. 

4.2 Model Validation 
To validate accuracy of the fuzzy models, validation 

data was applied to the models. The mean squared error 
(MSE) for training and validation data using the different 
approaches are illustrated in Table 1 and Figure 4. One of 
the frs t  observations that can he made from adopting this 
PCA-ANFIS approach is the reduction in complexitf. This 
type of PCA-initialised inferential measurement system 
results in a considerably less complex architecture as the 
number of inputs to the system will be significantly 
reduced. In this particular application the number of inputs 

to the system has been reduced by 75%. Due to the nature 
of ANIFS, the number of inputs to the network and number 
of membership functions chosen for each input has a 
significant effect on the number of modifiable parameters 
within the system. 

Table 1. Performance measnres for ANFIS and 
PCA-ANFIS models 

ANFlS PCA-ANFIS 

0 641.5 3.2200 0.0T90 5.1980 
0.2905 4.5270 0.0676 r o r s a  
0 0756 0.6955 0.0590 0.8118 
0.0449 0.3470 00529 0 4 7 7 4  
00361 03400 0.0475 0.3829 
0.0302 0.3950 00424 0.237, 
0.0296 0.41en 0.0384 0.13i.e 

Using the grid partitioning method the system 
generates rules by enumerating all possible combinations of 
membership functions of all inputs; this leads to an 
exponential explosion even when the number of inputs is 
moderately large. This sometimes is referred to '*curse of 
dimensionality" [21]. Clearly this issue has been eliminated 
with the incorporation of a PCA model as the number of 
adjustable parameters has been dramatically reduced. 
Evidently, training time will be significantly reduced also 
as the computational overhead associated with the PCA 
algorithm is negligible. It can be observed that the training 
time is 150 times quicker when the Principal Components 
are used as inputs to the network. 

~ WT1S ---- PClLUlFlE 
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Figure. 4 Training and validation errors 
" D R i i D n i  

Use of a smaller number of orthogonal latent variables 
(i.e. PCs), which are linear Combinations of the original 
variables Overcomes the problem of overfitting that is 
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common in neural network and ANFIS training. For the 
standard ANFIS approach the regression algorithm is over- 
fitting the training data after 50 iterations. For the PCA- 
ANFIS approach; no overfitting occurs. Another advantage 
of using this approach is the enhanced model accuracy. The 
optimal performance achieved resulted in a validation error 
of 0.0795 compared to that of 0.34 using the traditional 
ANFIS approach. This is a considerable improvement using 
the proposed approach. Therefore the advantages in both 
model performance and improved training ability by the 
incorporation of a PCA-initialisation model have been 
demonstrated successfully. 

5 Conclusion 
This paper presented a detailed systematic approach for 

the development of inferential measurements using a hybrid 
PCA-ANFIS approach and illustrated the improved effects 
on network performance using the approach. The 
advantages can be summarised as follows: . Performancelaccuracy of the model is significantly 

. Model is more robust as collinearity affects are 
accounted for by incorporation of PCA algorithm ; 

Complexity of model significantly reduced; training 
time also significantly reduced. 

A more concise method for fusion of statistical and 
computational intelligence models has been discussed. The 
application on which this methodology is demonstrated is 
unique. No such work in the literature to date has presented 
any inferential modelling strategies in the area of the 
coating indushy. This strategy developed through the 
fusion of statistical and artificial intelligence modelling to 
generate a hybrid inferential measurement system has the 
potential to significantly improve the quality control 
monitoring system and reduce the economic loss 
encountered through the production of off-spec material. 
Future work will attempt to improve prediction accuracy 
further by investigating different types of computational 
intelligence models such as Self-organizing Fuzzy Neural 
Networks (SOFNN). This work aims to automate much of 
the model development process while improving model 
accuracy concurrently. 

increased ; 

- 
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