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Abstract 

The paper presents development and implementation 
of Advanced Combustion Controller (ACC) for a coal- 
fired boiler. The solution consists of Combustion Con- 
troller (multi-variable predictive controller) and Com- 
bustion Optimizer (cautious strategy stochastic opti- 
mizer). 

Optimization is based on a model of the CO and NO, 
emissions. The model is used to calculate the set- 
point of the optimal air/fuel ratio(s) maximizing the 
efficiency of the plant under constraints given by emis- 
sion limits. 

1 Introduction 

The objective of application of model-based predictive 
control technology for boiler control is to  enable tight 
dynamical coordination of selected controlled variables, 
particularly the coordination of air and fuel flows dur- 
ing the transients. This approach can be used - in 
connection with excess air optimization - to  increase 
the boiler efficiency by 1-2% while considerably reduc- 
ing the production of NO, by 15-20%. One of the im- 
portant features of the predictive controller developed 
is the control of the trajectory of the ratio of selected 
controlled variables [5] 

While the standard air-fuel interlock provides accept- 
able steady-state performance, the solution based on 
classical PID controllers may not be fully satisfactory 
during the transients] e.g. for boilers operating in cy- 
cling regimes, particularly if low-NO, burning with re- 
duced excess air is used. 

The controller cooperates with combustion optimizer, 
providing the optimal air to fuel ratio(s) setpoints, 
based on maximizing the efficiency of the plant under 
constraints given by emission limits. Optimization of 
combustion products must involve a suitable model de- 
scribing the dependency of product concentrations on 
manipulated and measured variables. 

Unfortunately, the models provided by the theory of 
combustion are too complex and involve difficult-to 
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measure variables [2]; therefore they cannot be eas- 
ily used for control. Practically usable models usually 
represent a trade-off between model complexity and 
accuracy [4, 7). This text describes a second genera- 
tion of such model, based on well-established grey-boz 
modelling paradigm: combine the prior information re- 
sulting from first principles models with the posterior 
information (adaptive features) provided by the data. 
Realistic approach to  combustion modelling is to s u p  
pose the following measurable variables: rate of fuel 
feed to  the pulverizers, air flows (primary, secondary, 
tertiaty/overfire if applicable) to  the burners and con- 
centrations of the [NO,], [CO], and [Oz] in the output 
flue gas. 

For the two key products, carbon and nitrogen monox- 
ides, generation mechanism is highly influenced by tem- 
perature distribution and mixing (velocity/turbulence) 
in the combustion area. Unfortunately, these param- 
eters are not available in real-time. Presented model 
is based on the idea that the [CO] and [NO,] concen- 
trations are functions of fuel and air flow rates in the 
boiler and additional unknown factors (related to  the 
temperature/degree of turbulence in the boiler) that 
can be modelled as a stochastic process. This idea was 
verified empirically and the evaluation indicates that 
the air and fuel masses actually burnt are disturbed by 
irregularities in the transport (“blasts]’ in the flow). 

An essential property of the model is adaptivity, i.e. 
its parameters must be recursively estimated from the 
data to  reflect current state of the process, fuel qual-’ 
ity etc. With nonlinear models it is difficult to  adapt 
model parameters recursively, because nonlinear statis- 
tical estimation methods are mostly iterative. One of 
the few exceptions is the linear regression model which 
lends itself to  numerically reliable yet simple recursive 
parameter estimation. 

2 Modelling of combustion products 

2.1 Combustion optimizer architecture 
The optimizer architecture is depicted in Figure 1. The 
air and fuel supply dynamics are represented by two 
separate blocks P1 and P2. Combustion is modelled 
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Figure 1: Architecture of the combustion optimizer. 

by the block C, S represents the dynamics of flue gas 
transport and flue gas analyzers. 

Our first-generation model used for the optimization 
purpose was based on modelling concentration of pol- 
lutant X as a nonlinear function of air A to fuel F ratio 
combustion chamber, with the transport dynamics r e p  
resented by FIR (finite impulse response) models 

with unit gain (resulting from mass conservation) 
CT=lgF(~) = C r = l g A ( ~ )  = 1. This model is in- 
sufficient, particularly for [CO]. 

Better representation of the prior information, that the 
settling time is in an interval T E [7',F] and the gain 
is unity, can be approximated by a FIR 

T 

N 

k=O 

with the prior information about uncertainty of the 
dynamics expressed as probability distributions of the 
terms 

t 

r = O  

An example of ucertainty propagation resulting from 
uncertain dynamics is depicted in Figure 2. note the 
increase of uncertainty during the transients. 

2.2 Combustion process 
The combustion process is very complex and non- 
linear. The only prior information we were effectively 
able to incorporate into the model is related to the sto- 
ichiometric and mass balance considerations. 

For the prediction of CO concentration, the following 
variables are relevant (neglecting NO, and SO2 com- 
ponents): 
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Variables: 

CO2 production 
CO production 
N2 production 
carbon contributing to CO2 
carbon contributing to CO 
oxygen 0 2  contributing to CO2 
oxygen 0 2  contributing to CO 
unburnt. oxygen 
nitrogen Nz in the air 
wet flue gases 
input air 
water vapor 

Constants: 

wet/dry flue gas ratio 
fraction of C contributing to CO 
fraction of unburnt C 
fraction of 0 2  in the air 
fraction of NZ in the air 

symbol unit 
CO2 moles-' 
CO mole s-l 

NZ moles-' 
C' mole s-l 
C z  moles-' 
0: mole s-l 
O,2 mole s-l 
02 mole s-l 
N i  mole s-l 
Y mole s-l 
A mole s-l 

W mole s-l 

symbol range 
y d r y + w  

Ydry 

61 [ O ,  11 
6z [o, ij 

Po* 0.21 
P N ~  0.79 

A system of linear equations can be derived based on 
mass balance and reaction stoichiometry. For example 
reaction C + O2 -+ CO2 entails algebraic equations 

o'-co2 = 0, 
@-CO2 = 0. 

and the mass balance equations 

y = 0 2  + CO + CO2 + N2 + W(wet output) 
A = N2+02 

In the vector form the equation reads 

M[C',  C2,  CO, C02, .  . . , Y, WIT + N[F,  A]* = 0 



the mass fraction of carbon the fuel also varies, which 
can be approximated as 

I 
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Figure 2: Modelling of air and fuel dynamics with uncer- 
tainty propagation. 

where 

M =  

I C1 C z  CO CO2 0: 0; 0; Nz Y W 

1 0  0 - 1  0 0 0 0 0 0  
0 0 0 -1 1 0  0 0 0 0  
v 1 - 1  v o v o o  v v  
0 0 - 1  O O Z V V  O D  
0 0 1  1 0 0 1 1  - 1 1  
0 0 0  0 1 1 1 1  D O  
0 0 0 0 0 0 0 0 ( " - 1 )  1 
1 1 0  v v v o o  0 0  
0 - 1  0 v o o o v  0 0  

\ v v v  v 1 1 1 0  O D  

The CO and 0 2  concentrations in flue gas are de- 
fined as fractions C O I Y  = [CO], C02IY = [COz], 
and O i / Y  = [ 0 2 ] ,  i.e. fractions of certain linear func- 
tions of the two mass supply rates A(t) and F ( t )  

a22 

For both CO and N O ,  the formation mechanism de- 
pends mainly on temperature and turbulence param- 
eters and the stoichiometric equation captures only a 
part of model. A thorough data-analysis show that 
the stoichiometric part of the mechanism is relevant 
for high-frequency part of the model, whereas the pa- 
rameter 61 changes slowly but in a random manner. 
Further improvement is reached if also the correlation 
between [CO] and [NO,] is used. 

2.3 Air and fuel flow analysis 
The previous subsection has shown the output concen- 
trations to be certain linear rational functions of the 
supply rates. Unfortunately these supply rates at the 
input of the combustion block C in 1 are not measur- 
able. They are estimated as outputs from the transport 
dynamics blocks P1 and P2; estimates are represented 
by mean value and dispersion. Moreover, it is neces- 
sary to  reflect the fact the boiler draws false air and 

with air supply rate bias 

using variables 
e k  False air draught parameters 
IE 

E F  

E! 
A w  
F 

Supposing independent sources of uncertainty, result- 
ing equation for least squares estimation of unknown 
parameters reads 

Carbon [mole] fraction in the fuel [kg] 
uncertainty of carbon supply rate; dispersion UF 

uncertainty of air supply rate; dispersion (TA 

Wet air supply rate set-point, [ mole s-'1 
Fuel supply rate set-point, [ mole s-'1. 

where z = (a12 - a22m02) and E - N(0,l). This 
equation supplies the. posterior information about the 
masses instantaneously burnt in the boiler, using [OZ] 
measurement to  improve A and F tracking. 

The stoichiometric and mass balance equations would 
solve the CO generation problem completely provided 
the parameter 61 is known. In fact it is not and it de- 
pends on unknown factors in a unknown way. It can 
supposed that that 61 is a low-order linear stochastic 
process, with settling time (estimated from the data) 
more than 200 seconds. No significant correlation be- 
tween 61 and any other measurable variable was found. 
Apart from 61, the dynamics of the combustion block 
C is considered to  be much faster than the other blocks 
and it is neglected. 

2.4 Logarithmic version 
The stoichiometric equations can be more conveniently 
expressed in a logarithmic form. For all = 1 we get 

log F - log A - Iog(02a22 - a12) = 0 

Approximation of the term log(O2a22 -a12) with a nor- 
mal random variable [. can be done by fitting the first 
two moments. The measured concentration of oxygen 
m = [ 0 2 ]  is supposed to  be uniformly distributed on 
[E,.=]. Then [ = log(O~a22 + al2) has distribution 
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for E E [log(a22m+al2), l o g ( a ~ ~ E + a l 2 ) ]  with first and 
second moments 

lodazz=+alz)  
E { E }  = [(t - 1) exPtllog(azzm+alz) - 

& { E  2 } = [(E2 - 2 t  + 2) 'og(azz=i i+an) 
exp (1 log(azzm+alz) 

Logarithm of the CO equation for d1 << 1 reads 

log F + log 61 + lOg(C0) - log A - log a 2 2  = 0 

For the logarithmic model, logAA = BAloga + 
OF log F + el is used. 

For the purpose of prediction, it is necessary to  trans- 
late distribution of log A to distribution of A .  Suppose 
3: is uniformly distributed on [a, b]. Then 

and the first two moments are 

exp(2b) - exp(2a) 
b - a  

As a result, we have the following linear regression 
model for the logarithms of combustion products 

log F - log A - log(0zazz - aiz) 
log 61 + log F - log A - log a 2 2  + log(C0) 

BA [NO,] log A + @ F [ ~ z ]  IOg F + 81 [NO,] + € N O ,  

= 0 
= 0 

= O 

where each entry is supposed to be a normally dis- 
tributed random variable with known mean and vari- 
ance and can be described as 

logF(t)  = logP(t) + l o g ~ + ~ ~ ( t )  
logA(t) = logA(t) +e~[A] logA( t )  + 

+ e ~ [ A ] l o g P ( t )  +Qi[A]  EA(^) 
logdI(t) = @ A [ s l ]  logA(t) f eF[bl]iogp(t) + 

+ el pll + ( t )  + . . . + (t - 

These equations are coupled by the two random vari- 
ables A and F - the air and fuel masses burned instan- 
taneously in the boiler. All the unknown parameters in 
these equations are denoted as e[.  . .] and can be esti- 
mated recursively. The equations may be made further 
coupled by a correlation of a noise term in NO,  and 
CO equations, which seems to  be proven by the data- 
analysis. 

2.5 Uncertain flue gas analyzer dynamic 
The sensors measuring CO, 0 2  and NO, must be mod- 
elled as dynamic elements. Similarly as for the two P1 
and P2  blocks, the settling time is known only approx- 
imately T E [ z , F ]  and first order delay is supposed. 
Let us denote the input to  the S block as u(t)  and 
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output as y(t). Then the first order random dynamics 
u(t) ---f y(t) as follows can be described as 

Y(t + 1) = Y(tMt) + (1 - a(t))u(t)  
a ( t )  N U ( g , E ) .  

i.e. it is uniformly distributed on(g, E) .  The inverse dy- 
namics can be used to  approximate the instantaneous 
gas concentration u(t)  as 

where A(t) is an unknown correction term with prob- 
ability distribution 

PA (A)dA 
1- -LF L FA(Ao) = P{A < A,} = 

Fa(A0) = FA ( 1 - y(t+2iy(t) ) 
For a N U (g,7i) we get 

for A E (y(t+:!iy(t), y(t+,ljgiY(t)). and the first and 
second moment of distribution pa(A) are 

Hence we are able to  approximate the instantaneous 
gas concentration dynamics by means of the mean 
value and dispersion. In steady state the dispersion 
approaches zero and the model is rapidly adapted. 

2.6 Heteroscedastic model 
In the previous sections, incorporation of prior informa- 
tion into the model was described. The CO production 
was modelled by a set of linear regression models. The 
difference between the actual CO concentration and 
predictions provided by the model is a prediction error 
(residue) ~ ( t )  with time-varying variance of "burst" na- 
ture. The variance of the residua can be modelled using 
an ARCH model (stands for Auto-Regressive Condi- 
tional Heteroscedasticity) [B1986]. 

Using the ARCH approach, the log-variance of the pre- 
diction error is given by an auto-regressive random pro- 
cess 

loga6,(t) = ~ a k l o g a 6 , ( t - I c ) + l o g \ E ( t ) l  
k 



or using 2-transformation limits, it is still possible t o  find A*(t )  minimizing the 
violation of these limits. 

The equation for prediction error r ( t )  based on the 
driving noise €6, ( t )  with time-invariant variance reads 

and after substitution for log ~ 7 6 ,  (2) we get 

This is an output error model that can be handled using 
pseuddinear regression. This type of model where the 
amplitude of the prediction error eh1 is modulated by 
occasional bursts of the prediction error is particularly 
efficient for the [CO] modelling. 

3 Combustion Optimizer 

The Combustion Optimizer is based on cautious opti- 
mization strategy, i.e. it uses the full information about 
the uncertainty/distribution of combustion product 
concentrations (e.g. peaks in CO production). The 
optimizer adjusts the air supply rate in an adaptive 
manner, so that the changes of fuel quality and ad- 
ditional air are compensated for. Optimization of the 
total amount of combustion air requires inferential sen- 
sor for false (sucked-in) air that is not part of the mea- 
sured/controlled air flows. This inferential sensor is 
part of the presented combustion model To be able t o  
close a reliable feedback from flue gas analyzers (typi- 
cally, 0 2  and a subset of CO, CO2, SO, and NO, con- 
centrations may be available), sensor diagnostics based 
on sensor cross validation is also implemented in the 
Combustion Optimizer. 

The purpose of the model is to  calculate the “optimal” 
air to  fuel ratio(s). The optimality index is related the 
plant efficiency .(A/F), which is a function of the air 
to  fuel ratio. The efficiency is maximized subject to  
inequality constrains 

subject to  

i.e. the probability that the actual concentration val- 
ues will exceed limits is constrained. In the case this 
optimization problem is infeasible, the constrains are 
replaced by a penalty function, i.e. if it is impossible 
to  find A*(t )  so that all concentration are within given 

The [CO] and [NO,] abatement require exact co- 
ordination of the air and fuel supply rates so that AIF 
entering the combustion is constant and optimal. As 
the dynamics P1 and P2 is uncertain, the A/F ratio 
is reduced when the boiler is working near the steady 
state conditions, and increased to  guarantee the com- 
bustion quality during the transients when exact co- 
ordination of the fuel and air flow cannot be guaran- 
teed. 

3.1 Implementation 
The solution is implemented as an open solution (in- 
dependent of a particular DCS) on Windows NT node. 
The communication with boiler regulatory control is 
via OPC (OLE for Process Control standard) client- 
server technology. Use of the OPC link also enables 
use of the ACC as a full-featured trainer running on 
a boiler simulator (including regulatory control layer) 
with OPC server. 

’ 

Currently, ACC is running on three industrial size boil- 
ers (125 ton/hour, 9.4 MPa, 540 “C) and the ACC con- 
troller is distributed worldwide as a solution for power 
generation and industrial energy. Typical benefits of 
ACC is 1 - 2% efficiency increase and reduction of NO, 
emission by 15 - 20%. A typical screen showing the es- 
timated uncertainty of CO emission as a function. of 
excess air level is depicted in Figure 3. 

3.2 Current developments 
Current development is focussed on combustion opti- 
mization with more complex (staged) air distribution, 
multi-fuel fired boilers and link between the ACC and 
Economic Load Allocation (ELA) package. 

Note that the boiler efficiency curve depends on the 
achievable excess air ratio. For several boilers op- 
erating to a common steam header(s), the link en- 
ables propagation of the efficiency curves of individual 
boilers (resulting from the optimized combustion effi- 
ciency) to  the load allocation level. This bottom-up 
approach minimizes the burden of building and main- 
taining a separate model for the Real Time Optimiza- 
tion level when the information relevant for economic 
optimization is available on the process control level. 
Another benefit of this approach is event-driven real 
time responsiveness to  varying economic environment 
(e.g. changes in input/output costs and constraints 
propagation) typical for power sector as a result of un- 
budling/deregulation. 

. 
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4 Conclusion 

including pilot testing on a pulverized-coal fired boiler 

We have presented a comprehensive model of combus- 
tion products generation with uncertain transport and 
sensing dynamics and estimated false air ratio. The 
model is based on a grey box combustion model. The 
uncertain dynamics are not identified, however, the 
contribution of uncertain dynamics to  the overall un- 
certainty is systematically propagated. The model of 
combustion is based on stoichiometric equations and 
mass balance equations, combined with the posterior 
information from flue gas analyzers. The paper con- 
centrated mainly on [CO] prediction, which is most 
difficult to  model. 
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Figure 3: GUI of combustion optimizer showing the CO uncertainty. 
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