ADAPTIVE INFERENTIAL CONTROL

K.A. Brodie, M. J. Willis, M. T. Tham.’

Abstract

Despite the successful apphcatlon of advanced predictive control algorithms to many industrial
chemical processes satisfactory system performance cannot always be guaranteed. This is often the case
where the infrequent measurement of key process outputs is unavoidable due to sampling limitations. In such
situations the ability to detect deviations from desired process behaviour is significantly impaired. Inferential
estimation techniques employ more easily measured secondary variables to infer the desired primary variable. -
This facilitates the early detection of disturbances thus improved control performance is to be expected. An
adaptive inferential measurement algorithm has been successfully applied to various industrial processes
(Lant et al 1991; Mitchell et al 1995). This contribution discusses the development of a model based control
strategy using the inferential estimation algorithm as a basis. The theoretical development of the adaptive
inferential long range predictive control algorithm is outlined. The algorithm offers enhanced control
performance when compared to existing model based desngn strategies.

Introduction

' The measurement of key process variables at a rate suitable for on-line control is a problem common
to many industrial processes. Either the instrumentation does not exist requiring the use of analysers with
long cycle times or off-line laboratory assays. The penalty is that deviations from nominal operation may
remain undetected for significant periods of time. Effort towards alleviating this problem has included the
development of inferential estimators (Guilandoust et al 1987; Lant 1991) with considerable success when
applied to industrial situations (Lant 1993; Mitchell et al 1995). Inferential estimators are reliant on the
desired primary variable being related to other more easily measured secondary variables. The secondary
outputs are used to infer a value of the primary variable at the more frequent sampling rate of the secondary
variables. The inferential estimator is implemented in an adaptive framework with the parameters of the
‘primary mode] updated whenever a value of the primary output becomes available. For further details see
Lant (1991, 1993) .

A natural progression of the work with the adaptive inferential estimator (AIE) is the development of
an inferential controller. One method may be to employ the inferential estimator as an augmented
measurement device providing the input for a conventional three term (PID) controller. However, inferential
estimation is more justified in high performance applications. These are predominantly the domain of model
based control algorithms such as Dynamic Matrix Control (DMC) developed by Cutler and Ramaker (1980)
and Generalised Predictive Control (GPC) developed by Clarke et al (1987 a, b). Brunet-Manquat et al (1994)
demonstrated how the inferential estimator can be synthesised into the Generalised Minimum Variance
(GMV) control algorithm of Clarke and Gawthrop (1978). Initial results were encouraging. The adaptive
inferential controlier was shown to significantly out-perform the GMV controller and the combined AIE and
GMV strategy. This paper demonstrates how the AIE can be incorporated into a long range predictive control
strategy. A case study is presented demonstrating the effectiveness of the algorithm.

Adaptive inferential estimation ' '

“The adaptive inferential estimator used in this work was originally developed by Guilandoust (1988).

The primary and secondary models are based on an observer canonical state space model and can be shown to

take the following form: ,

v(t)=a,v(t—1)+...4a v(t—=n)+bu(t-m=1)+..+b u(t=m=n)+| w(t—m~-1)+...+| w(t—m-n)+
C,€(t—1)+...4+c,E(t~n) , 48]

y(1) =07¢(t—d) +e(t) 3]

where 67 =[B,.....B8..T..... To. ¥1ree s ¥ 04,28,
o(t—d)=[u(t-m-d-1),....¥(t—dlt—-d),...,. wt—-m—-d~1),...,e(t—d),...]
g(t) = v() - ¥(t)
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The estimates of the primary variable are calculated using,
§(t+d)=6%(0)

where u(t) is the manipulated input, y(t) and v(t) the measuremes
respectively, w(t) i1s deterministic disturbance, 'm!’ the smallest timni
u(t) and e(t) is the equation error.

v The estimate is a function of the information available up
implementation of the algorithm requires the following steps: upda
use the ‘new’ model to calculate the filtered value of the second

®)

nts of the prrmary and secondary variable
e delay in the state response to changes in

to and including the current time, t. The
te the parameters of the secondary model,
ary output, update the parameters of the

primary model if a new value of y(t) becomes available, calculate the estimate of the pnmary output.

Adaptlve inferential long range predlcuve controller -
- “The use of a single model for both the controller and infere

ntial estimator has a number of advantages

mcludmg reduced computational overheads and a single adapuve model allows faster tracking of the process '

" (Brunet-Manquat, 1994).-Consider the mferent1a1 esnmator presented previously:

yO =Bu(t—m=d)+tv(t=d)+ ‘yw(t m d)+85(t d)
AV(t) =Bu(t= m) -+ Lw(t — i) % Ce(t)

Substituting for ¢(t—d) in Eqn (4) usmg Eqn &) glves
A'y()=Bu()+L w()+C &(1) i

where,
A'=A,B=

|
4
1
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This model has an ARMAX structure. However, it.may be noted. tlrat the estimate of the pnmary vanable is

used as the autoregressive component of the model.
Long Range Predictive Controller :
_ A long range predxctlve controller. was develeped based u

'.i,j

ipon the GPC cost functlon and Eqn: (6) :

The use of the ARMAX process model, as. opposed to-the .CARIMA. process model used in the original

version of GPC, yields the following control law:

u =(G'G+AD[G (v, ~)+Mu,)

where: 'y, =[y_(t+1),y,(t+2),....y, (t4 Nz)]T
f=[ft+ 1 f(t+2),...f(t+N2)"

i

: (7):-.i

Here u;_jis a vector of the previously caléulatéd controls, f is the predlctor equation known at time, t, and Ysp.
is a vector of the future set pomts As future values of the deterrmmstrc disturbance, I(t), are unknown future .

values are therefore assumed equal to the current value. The s
prediction error, e(t+_]) which'is used to remove offset that may be
-procedure adopted is identical 'to that used i n DMC. G is as deﬁm
weighting factor to penalise changes in the ma.mpulated mput. :

Case studies
Consxder the following state space system

ame assumption is made for the future
introduced via plant-model mismatch. The

2d in the original version of GPC and Aa

X(1+1) = Ax(0)+ Bu(t—m) + Lw(t-m), v(o) = Hx(t), y(ij_nx(: .

where,

1535

A= [—05866

(1)] B [0028 00234] D= [1 1] H= [1 o] LT‘—[(]

6 0.24),d=4,m=1

The performance of the inferential controller was evaluated agamst the CARIMA model based GPC. The
primary output was controlled in both cases. The GPC was solely relrant upon the measured primary variable

available once every four sample trmes

A comparison of the servo and regulatory control charactensucs of the controllers can be seen in

Figure 1. A fourth order GPC was applied with.a sample time. =4,
order. The setpoint for the system was a periodic step input of unit
periodic disturbance was introduced after 200 samples with a perio
the first 120 samples the system was operated in open loop in orde
controllers were commissioned. The manipulated mput was chpped

As is clearly illustrated in Flgure 1, the inferential con

The inferential controller was'of second

magnitude and a period of 800 samples. A

d of 800 samples and unit magnitude..For.
1 to identify model parameters 'beforethe
at +5 units but not rate limited.

troller y1elds significantly better control

performance when compared to the GPC. In the servo case, the GPC exhibits significant overshoot while the
inferential controller gives an over damped response. In the regulatory case the difference between the GPC

and inferential controller is.again apparent. The inferential control
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the faster detection of the initial disturbance via the secondary variable. The GPC has to wait up to 4 times
longer than the inferential controller before the disturbance is detected Both controllers reject the dlsturbance
without offset.

Figure 2 shows the manipulated variable for both controllers The AIC.is far more active than the
GPC. While in a practical implementation the activity of the AIC may not be realisable the purpose of this
exercise is to demonstrate the potential of the algorithm. This is attributed to the sampling limitations placed
on the GPC while the inferential controller can manipulate the process input at a rate much more suitable to
the process characteristics.
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Fi igure 1 Companson of process outputs for adaptive GPC and adapuve inferential control.
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Figure 2. Comparison of mampulated inputs for adaptlve GPC and adaptive inferential control.
Conclusions

An adaptive inferential controller has been developed in a long range predictive  framework.
Simulation has shown this controller to yield significant servo and regulatory performance improvements
over a standard long range predictive controller (GPC) on a system with sampling limitations. ‘
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