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Abstract-In this tutorial, we discuss approaches to 
control of one or more primary variables in a process 
using secondary measurements. This approach is 
useful when the primary variable is not easily 
measured, or has large time delays or lags associated 
with it. It is also useful when the secondary 
measurements contain information about disturbances 
that affect the primary variable. We start by discussing 
some classical approaches to this problem. Then we 
present inferential control strategies that use process 
models to predict the effect of the disturbance variable 
on the primary output and use this prediction to 
regulate the process. Next we present a framework 
for incorporating the inferential control strategy 
within the framework of the often-used model 
predictive control (MPC). This framework, termed as 
model predictive inferential control (MPIC), is general 
enough to accommodate multiple secondary 
measurements as well as nonlinear estimators and 
controllers. The concept is also extended to end 
product quality control in batch processes using 
intermediate measurements available during the 
middle of the batch. The advantages of inferential 
control are established using the Shell challenge case 
study problem, which employs linear transfer function 
models. Problems of collinearity among the secondary 
measurements ( which frequently arises) is addressed 
using principal component analysis (PCA) during the 
construction of the dynamic estimator. Numerous 
applications demonstrate the advantages of the 
inferential control strategy. 

1. Introduction 

There exist a number of processes in which the primary variable 
to be controlled is difficult to measure or is a sampled 
measurement with a long delay in the sampling and analysis 
process. Sometimes the quantity to be controlled is a calculated 
variable. In such cases control of the process is usually 
accomplished by measuring secondary variables (for which 
sensors are more reliable, cheaper or more readily available and 
installed) and setting up a feedback control system using these 
secondary variables. Such control strategies are referred to as 
inferential control. Figure 1 shows a few examples from process 
industry where inferential control has found application. 

In distillation the primary variables to be regulated are the product 
compositions (bottom and distillate purity) as shown in Figure 
l(a). Gas chromatographs typically used to measure these are 
expensive, difficult to maintain and calibrate and introduce 

significant measurement delays because of the time needed to 
purge the sample line and to heat the sample. In this case, control 
is accomplished using temperature measurements on the 
intermediate trays. Joseph and Brosilow (1978a, 1978b) developed 
methods for construction of optimal and sub-optimal estimators 
and compared the two methods for inferential control of product 
composition on a simulated multi-component distillation column. 
Willis et al. (1991) discuss a neural network based estimation 
procedure for feedback control of the product composition from an 
industrial distillation tower using measured quantities such as 
overheads temperatures. Ye et al. (1993) report improved control 
of both the product flow and compositions with a neural-net based 
inferential control approach for the Tennessee Eastman industrial 
test process. Abdel Jabbar and Alatiqi (1997) present an 
inferential-feedforward control scheme for a petroleum 
fractionator with undefined blends of hydrocarbons as the feed. 
Unmeasured feed composition disturbances are estimated from 
secondary measurements and the manipulated variables are varied 
to maintain desired product quality. 

In polymerization reactors, primary variables of interest are the 
molecular weight and viscosity of the product, as shown in figure 
1 (b). Control is accomplished using secondary measurements such 
as temperature and pressure in the reactor. MacGregor et al. 
(1991) report how some common reactor operating problem 
while producing Low Density PolyEthylene (LDPE) can be 
detected from online measurements such as the temperature 
profile down the reactor and the solvent flow rate, which are 
availabIe on a more frequent rate than fundamental polymer 
properties. Irwin et al. (1995) describes inferential estimation of 
polymer viscosity in a polymerization reactor. Here the 
measurement from the viscometer is subject to a significant time 
delay but the torque from a variable speed drive provides an 
instantaneous indication of reactor viscosity. McKay et al. (1996) 
applied nonlinear inferential models to predict polymer viscosity 
using available measurements for an industrial extrusion process. 
Figure l(c) shows a third application of inferential control. This 
pertains to control of industrial drying processes. Koppel et al. 
(1995) describe simulation and control of such drying processes 
with inferential determination of solids moisture, a variable not 
usually measurable, and using this to manipulate the temperature 
of drying air until the desired target in solids moisture is obtained. 

In addition to the above, inferential control is also applied to 
control concentration in reactor effluents. Budman et al. (1991) 
applied an inferential control technique to an experimental fixed 
bed reactor where two controlled variables (the exit temperature 
and maximum bed temperature) are inferred from a single 
temperature measurement. Panish and Brosilow (1985,1986) 
discuss nonlinear inferential control of reactor effluent 
concentration from temperature and flow measurements. They 
also present rules to tune inferential controllers online to enable 
them to outperform conventional feedback control systems. 
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(a) Distillation 

(b) Polymerization Reactor 

(c) Solids Drying Equipment 

Figure 1. Examples of Processes with Inferential Control 
Problems 

A common problem in inferential control is the estimation from a 
large number of process variables, which are highly correlated 
with one another. Kresta et al. (1994) discuss how Partial Least 
Squares (PIS) techniques can be applied to build good inferential 
estimators in such cases. Mejdell and Skojestad (1992) present a 
PCR ( Principal Component Regression) estimator for estimating 
product composition in distillation columns from secondary 
temperature and flow rate measurements. It was demonstrated that 
the performance of the estimate is generally improved by adding 
more temperature measurements once the strong collinearity 
between the temperature measurements is tackled with PCR. 

In this paper, we show how model predictive and inferential 
control strategies can be combined to cut costs by improve product 
quality and quantity. In Section 2, we describe the generic 
problem of inferential control. Limitations of some of the classical 
control strategies are discussed. In Section 3, we demonstrate how 
the inferential control framework can be extended to a model- 
predictive control framework, which is widely used in industry 
and applicable to multi-variable and nonlinear systems. In Section 
4, we discuss some practical issues such as use of multiple 
secondary measurements, collinearity among the measurements, 
extension to nonlinear systems and application to end product 
quality in batch processes. In Section 5, we present a case study of 
the Shell process control challenge problem to demonstrate the 
superior disturbance rejection properties of this scheme. 

2. Generic problem 
Figure 2 shows the schematic of the generic problem tackled by 
inferential control. The control objective typically is to keep the 
primary variable on target in presence of unmeasured 
disturbances. We first look at some classical techniques used, 
which while being simple to implement can be costly because of 
poor controller performance. 

Disturbances 

Primary Variablc 
anipulated Inputs 

I I  I 

l l  
~~~~~~~~~ 

Figure 2. Generic inferential control problem 

For the simple case of a linear system with a single disturbance, 
single primary output and single secondary measurement as in 
Figure 3, the process can be modeled as: 

y ( s )  = g ( s ) u ( s )  + g (s)d(s) : primaryoutput 
UY dY 

t ( s )  = g U t ( s ) u ( s )  + gdt(s)d(s) : secondarymeasurements 

(1) 

Figure 3. Block diagram of a process with one primary and one 
secondary measurement 

2.1 Some Classical Control Strategies 

Consider direct feedback control of the secondary measurement t 
using the manipulated variable U as shown in Figure 4(a). This 
strategy can be used if the primary variable and secondary variable 
are very closely related. For example in distillation, it is well 
known that temperature is a very good indicator of product 
composition. Hence, by maintaining one of the tray temperatures 
constant, we can often maintain good control of the product 
quality. 
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Fig. 4b. Structure of the cascade control system 

Taking setpoint of t to be zero without loss of generality, the 
transfer function for disturbance rejection under perfect control of 
t can be derived as: 

Note that y(s) =O if g - and g - i.e. when the dt - gdy uy - gut 
disturbance d and manipulated variable U affect both t and y in a 
similar manner. If this is not so (which is often the case) this 
strategy may result in poor control. 

In the cascade control strategy, shown in Figure 4(b), the inner 
loop tries to maintain the secondary variable at a set point which is 
adjusted by the outer loop to bring y back to its set point. This 
strategy is usually employed when there are significant delays and 
lags associated with measurement of y. To implement this 
strategy, we must have a measurement of the primary variable. 
The disturbance rejection transfer function is given by: 

where 

(4) 
gctgcygdy + gctgdt 

81 = - 
+ gctgcyguy + gctgut 

This strategy has the advantage that steady state error in control of 
y will be reduced to zero if we use integral action in the outer loop 
controller. But whether this strategy will work well in a process 
depends on a number of factors. The inner loop should be able to 
react fast enough to follow frequent set-point changes. If there are 
significant lags in the inner loop then the system will not have 
enough time to settle down, and control system performance will 
be poor. If the disturbances come in at a low frequency such that 
the outer loop has enough time to correct it, this structure might be 
acceptable. However if the disturbances come at a frequency that 
keeps the system from settling down then the controller on the 
outer loop will not have time to settle down. Because of the large 
delays involved in the measurement this will usually mean poor 
performance of the control system. 

More importantly, both of the above strategies have no easy 
extension to the case of multiple secondary measurements. 
Usually multiple secondary measurements contain more 
information about the state of the system. Thus methods that use 
multiple measurements have an advantage over these multi-loop 
strategies. 

2.2 Estimator Based Strategies: 

2.2.1 Feedback control using a state estimator for y 
In this strategy, an estimator for the unmeasured output y is built 
first which is then used in a feedback control mode. Figure 5 
hows the structure and block diagram of this control strategy. 

k' 
Estimator 

Figure 5. Structure of the controller using state estimator 

The disturbance rejection transfer function in this case is 
given by (assuming perfect state estimation is possible) 

Note that this is the same as what we get if we had direct feedback 
control on the primary measurement itself. The advantage with 
this approach is that an estimate of the unmeasured state y is 
available through the secondary measurements, which is useful for 
the operator. If g c y  (s) and gdy ( s )  have large lags associated 

with them, then this can result in poor performance (since the 
optimum performance achievable using direct feedback control is 
limited by the timelags and time delays present in the feedback 
loop). This controller may be worse than direct feedback control 
on t in some cases if t responds faster to the disturbance and 
manipulated variable. In addition, state estimators are never 
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perfect and introduce additional errors in the feedback control loop 
that necessitate detuning the controller to some extent. The 
construction of state estimators is not trivial. 

2.2.2 Inferential Control 
In the classical 2-degree of freedom IMC structure an estimate of 
the disturbance effect on y (Garcia and Morari, 1982; Morari and 
Zafkiou, 1989) is fed back as shown in Figure 6. The question 
inferential control tackles is how to generate 
d = gdy ( s )d ( s )  if no measurement of y is available but 

only t(s) is available. 
I I I 

I I 
I ,- 1 

Figure 6. The 2-degree of freedom Internal Model 
Controller 

In this case, we can first compute 

And then obtain an estimate of d(s) (denoted using de ) as: 

dy can then be estimated as follows: 

Using this equation we get the structure of the inferential 
control system as shown in Figure 7 (Tong and Brosilow, 

97 8). 

Plant 0 
0 

Set Point 
Controller 

Controller 
b'igure 7. Structure of Inferential Control System 

The design of the disturbance controller, gd(s) is as in IMC. The 
output response is given by 

y = g  u + d  (9)  
UY Y 

To keep y close to the set point (= 0) we choose the controller so 
that 

Using the estimate of d, in place of d we get: Y 

The controller transfer function derived above may not be  
realizable since we have to invert the process transfer 
function. If the process transfer functions contain RHP 
zeros or time delays then we must add a filter f(s), designed 
as in the IMC controller. to make the controller realizable: 

The disturbance rejection transfer function for the control scheme 
is given by: 

This transfer function is very similar to a feedforward controller. If 
the filter transfer function used is close to 1 then we have nearly 
perfect rejection of disturbances as in feed forward control. In 
general the filter must have lag terms to compensate for modeling 
errors and make the system robust. 

It is important to differentiate the above structure from state 
estimation techniques like Kalman filter that uses t to predict y and 
then control y. Estimating y first and then designing a controller 
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for it throws away the feedforward nature of the inferential control 
structure. If the secondary measurements respond faster to the 
disturbances then one can take faster corrective action and hence 
get better control system performance by using t in an inferential 
structure as illustrated in the example below. If the output y 
responds to disturbances slower than t, then the state estimator will 
add additional lag in the feedback loop and hence will adversely 
affect the performance of the control system. Usually it is possible 
to identify secondary measurements closer to the disturbance and 
hence in general the inferential control strategy is preferred. 

Both the inferential control scheme and the state-estimation 
schemes outlined above can be extended to nonlinear and 
multivariable situations. In the following section, we extend the 
inferential control structure first to the model predictive 
framework, which is widely used in industry. This structure is then 
easily generalizable to nonlinear and multivariable cases. 

3. Development of Model Predictive Inferential Control 
(MPIC) Scheme 

+ 
Use Process model to + predict future control move 

' 

Estimate effect of 
disturbances on secondary _I variable 

A 

I I 
I I 

Predicted trajectory of 
secondaxy variables 

disturbances on primary . variable 

Current secondary Estimate effect of 
measurements 

I k 
Infrequent primary 
variable 
measurements 

I I  U Process 

' Figure. 8. Structure of MPIC 

Model Predictive Control is used extensively in industry to control 
constrained, multivariable systems (Froisy, 1994). As pointed out 
by Garcia and Morari (1982), this can be put in the framework of 
IMC for unconstrained systems. It turns out that the above 
inferential control strategy is more easily extended to 
multivariable and nonlinear systems if implemented using the 
MPC framework. In this section, we develop this framework 
followed by its extension to multivariable and nonlinear systems. 

3.1 Basic W I C  Algorithm 
The MPIC algorithm can be summarized as follows. Given 

A predicted trajectory vector of the primary output based on 

P past control actions t = &[, t[+, y...yt[+p p where k is 
the current time and p is the length of output prediction 
horizon 
A desired primary output trajectory vector 

Y r  = Ik Y;+ l , . . . yYk+p  r r  

Current measurement of primary output y r  and secondary 

variable of t r  

A dynamic matrix 4 relating the primary output and the 

input and dynamic matrix c relating secondary variable and 

the input: 

- 

- 

y = y  P +AAu+Dy; t = t  P +CAu+Dt - - - - 
(14) 

The controller problem is converted into an on-line optimization 
problem by defining the control objective as: 

Au 
Constraints on input and output variables and move sizes can be 
imposed while solving the quadratic minimization problem. The 
first step in the MPC algorithm is to estimate the effect of 
disturbance on the output variable (given as D, in equation 14). In 
practice, the disturbance estimate is obtained from the difference 
between the prediction of the current value of y and the current 
measured value of y. This also takes care of any modeling errors 
as well. Then the current disturbance and model error effect at the 
output is computed using: 

d = y m -  P 
k k ' k  

Estimating the future values of disturbances requires some 
assumptions. The simplest assumption which works well in 
most cases is that these are constant: 

- ..... = d (17) - 
y , k + l  - d y , k + 2  - Y , k  

d 

Now suppose y is not measured directly, but only the secondary 
measurement, t, is available. Then we need a way to estimate 
dy,k+l, dy,k+2, ,.. dy,k+p. This is precisely what the estimator 
derived in the previous section is designed to do. We might view 
the estimator as a dynamic system which is driven by input dt and 
produces estimate d (see Figure 9). Y 

past control actions y = L: ykp+I )..., y:+,, p , and a 

predicted trajectory vector of the secondary variable based on 
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sec.meas., t 

C I 

Figure.9. The estimator as a dynamic system 

Let b l ,  b2, b3. . . bp represent the finite step response model 
coefficients of the estimator a(s). Then dy,k . . . dy,k+p are 
estimated as follows: 

.... 
d y , k + p  = b p d t , k  

Because of the dynamic nature of the estimator, these 
disturbance estimates are no longer constant. Recall that dt 
is the effect of the disturbance on the secondary 
measurement t: 

dt  (s) = t ( s )  - g u t  ( s ) u ( s )  (19) 
gul(s) can also be represented in discrete form using the step 
response coefficients: 

Then the disturbance estimate on t can be calculated as 

If there are no constraints, Au is computed as least square solution 
to equation (15) and is given by 

After this, it is necessary to update the prediction trajectory of t 
taking into account the current control action Auk and current 
disturbance effect on t. 

... 
P P 

t k + p  = t k + p  + ‘ p  “ k  + ’ t ,k  

Before going to the next sample time, k+l, the tP vector is updated 
to include the prediction at k+p+l and discard the prediction at k 
(since we have a moving horizon and when we get to the next 
sample time we have to move the trajectory by one sample time 
forward into the future). This is accomplished by moving 

tk”,i (new) t tkP,i+l (old), i = OJ 7..., p - 1 

and replacing t [+p (new) with t[+p (old) (the last predicted 

value of t). The entire MPIC algorithm can be summarized as 
shown in Figure 8. 

3.2 Building of inferential estimator 
In this section, we address the problem of constructing the 
estimator for the effect of disturbances using secondary 
measurements. This is essentially an identification problem. The 
problem can be stated as follows: 

Given a set of past measurements tl,t2, ... t, and yl, y2, .., yn , 
construct an estimator for computing dy from dt 

We want to emphasize that the fact that we are not estimating y 
directly but dy First to estimate d,, we need to subtract the effect 
of the manipulated variable on t. This will require a model relating 
the two variables. This is accomplished by conducting 
identification experiments on the plant to relate the manipulated 
variables to the primary and secondary variables. We could collect 
data on the plant operational characteristics over a long period of 
time and then try to relate the two quantities dl and dy through 
regression on the data. This problem may be stated as follows: 

Given a set of operating data in the form of a table that tabulates 
y ,  t and U, find a linear relationship beiween the sampled values of 
dy and dl where 
d, = t - g , , , ~  

. .  
d y  = Y -gy ,u  
Once a time-series of dy and d, are obtained as above, an impulse 

response model relating the two can be written as: 

d y , n  = bldt,n + b2dt,n bnbdt,n-nb+l (25) 

where nb is the number of coefficients used in the FIR model. Put 
in matrix notation, the identification problem is to obtain a least- 
square solution to the following equation: 
E X = D  

Y - - 
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where are correlated. Principal component analysis (PCA) provides a 
way to compute estimators when the measurements are collinear, 
i.e. very similar to each other. PCA is used to eliminate nearly 
singular values and to generate more accurate estimators. The 
advantage with this approach is that all measurements are included 
in the estimator, thus maximizing the information content. In this 
case, PCA of equation 26 needs to be first performed, and the 
vector X is to be identified by including only the first few latent 
variables, which cany sufficient variance in the data. In the second 
case study below, such an approach was needed. 

The advantage with this representation is that prior knowledge 
about the time delay and/or the order of the system is not needed. 
One problem here is the fact that yl, yz. . . . yn may not be available 
if y cannot be measured at all. However, if y can be sampled and 
evaluated later (say in a quality control laboratory) or if 
sufficiently accurate first principles model is available, then such 
data can be generated. In a worst case scenario, one may have only 
steady-state measurements available and in such an instance, a 
steady-state estimator may be used as an approximation. 

4. Practical Issues in Implementation of Inferential Control. 

In this section we discuss some practical considerations in the 
implementation of inferential control. Issues addressed include use 
of multiple secondary measurements, effect of collinearity among 
the measurements, application to nonlinear systems and quality 
control in batch processes. 

4.1 Extension to multiple secondary measurements 
In most practical situations, more than one secondary 
measurement is available. A similar strategy may be derived for 
the case where a single primary variable is to be inferred from 
multiple secondary measurements. The only difference is that the 
matrix E in this case will be augmented to contain the effects of 

the disturbance on each of h secondary measurements. The vector 
X to be identified will contain the impulse response coefficients 
between each of the secondary variables and the primary variable. 

- 

and 

DyT = b y , ,  ' y , n b + l  ' y . N  1 
4.2 Effect of collinearity among the measurements 
Using multiple measurements as inputs for the disturbance 
estimator has some advantages and some disadvantages. On the 
one hand, we have more information about the disturbances 
affecting the process and hence can take more accurate control 
action. However, this comes at the expense of increased 
complexity of the estimator and increased susceptibility to 
measurement errors and sensor failures. Also, the measurements 
do not respond to input disturbances in an independent way and 

4.3 Extension to Nonlinear Systems 
The above algorithm and control structure and control structure 
can also be used if the estimator and process model are both 
nonlinear. The estimator can be represented abstractly as: 

where g, is a nonlinear function of the secondary measurements 
and the control efforts. Such a nonlinear estimator can be 
constructed from past measurements using nonlinear regressors 
such as recurrent artificial neural networks (RA").  

Similarly the process model may be constructed in the form 

Y k  = f y (u , ,dy ,W (28) 

Where fy is a nonlinear dynamic system driven by current control 
effort and the current disturbance estimate dy,k . Again, if no 
structure is known, RANN models may be constructed from past 
measurements. 

The MPIC for such systems can be stated as follows: 
1. Using current measurements, predict a trajectory for dy into 

the future using equation 27. 
2. Use the predicted disturbances along with the model to 
compute future control moves Uk, uk+l, ...... etc which will 

minimize the quadratic y p  - y'll ,where y' is the predicted 

trajectory and y' is the desired trajectory. This will involve 
solution of a non-linear programming problem. 
3. Implement control effort. Update trajectories. 
4. 
measurements and return to step 1. 

2 II 

At the next sample time, take another set of secondary 

Figure 10 shows the schematic of the algorithm. For a more 
detailed description of how to apply inferential control to 
nonlinear processes see the paper by Voorakaranam and Joseph ( 
1998). 

4.4 Application to Quality Control in Batch Processes 

Inferential control concepts can be extended to control of end 
product quality in batch processes. Note this in this instance the 
primary variable cannot be measured at all and control must be 
performed using intermediate measurements during the batch 
processing. In this case we build estimators to predict end product 
quality using the available set of intermediate measurements. 
Corrective control actions consist of changes to the batch recipe to 
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bring the quality back to normal. Because of the shrinking nature 
of the control horizon, the model predictive control strategy must 
be modified also. For more details and a case study application of 
this shrinking horizon model predictive control (SHMPC) see the 
article by Thomas et al(1997). 

Control Scheme 
Direct Feedback on y 

4.5 Effect of Modeling Errors 

Tuning constants 
K ,  = 2.12,~,  = 5 0 , ~ ~  = 13.5 

Modeling errors can cause the performance of the inferential 
controller to deteriorate. Any error in estimation of the primary 
variable can result in a steady state offset in the control system just 
as in a feedforward control system. To overcome this problem if 
possible inferential control should be combined with a feedback 
control of the primary variable whenever a measurement of the 
primary variable is available. One simple way to incorporate 
feedback control is to make a linear correction to the estimate 
whenever the primary variable is measured. The second case study 

Table 1. Tuning Constants used in the classical control schemes 

The controller is 

-1 
g cd = -guy dye 

(31) I (50s + 1)(6s + 1) 
40s + 1 

described below uses this strategy to overcome steady state error 
in control. 
The usual rules about tuning a controller in presence of modeling 
errors applies to MPIC as well. If the model error is small the 
controller can be tuned tightly. However if the modeling or 
linearization error can be large then the controller should be 
detuned by increasing the move suppression factors. 

= -.27 

To make it realizab1e we need to add a 

(50s + 1) (6s + 1) 
(40s + 1) (z s + 1) 

5. A Case Study: Inferential Control of the Shell Distillation gcd = -.279 (32) 

f Column 

Prett and Morari (1986) have provided a distillation column case 

problem to illustrate and evaluate the ideas presented above. The 
process model is: 

study for evaluating control strategies. We use a subset of the We Can choose the filter time constant to be 115 Of the numerator 
time constant Or 1.2 following M C  tuning guidelines. The 
resulting control system is shown in Figure 11. 

I d  

4.05e-27s 1 .44e-27~ 
d (4; 

1291 4 0 ~ + 1  Y ( S )  = 50s + 1 
3.66e-2s 1.27 
9s+1 6 s + l  

t ( s )  = U ( S )  + -d(s); 

Note that this secondary variable responds much faster to both the 
manipulated variable and the disturbance variable than the primary 
variable. For direct feedback control of y, the tuning constants for 
a PID controller are obtained by applying IMC tuning rules to the 
transfer function between y and U ( with Zf = Z/5 = 10 ). 
Likewise, for feedback control oft, the transfer function between t 
and U is used to get the controller tuning constants ( with 
Zf = Z / 5 = 2). Two controllers must be designed for the 

cascade control scheme. For the inner loop, the same controller 
designed above for the case of direct feedback control of t is 
employed. For the outer loop controller, a new step response 
obtained with the inner loop closed is used to design a PID using 
IMC tuning rules (with zf =lo>.  The controller tuning 

constants for all these schemes are shown in Table 1. 
Using equation (8), the estimate of dy is given by 

Y, Primary WtpW 6 distillate endmint 

I I I dt  
I -.279 (50~+1)(6~+1) 

(4os+1)(1.2 s+l) 

Figure 11. Inferential controller for the shell distillation column 

Figures 12 and 13 shows the frequency and step response of 
controllers using the four different control schemes designed 
above. The excellent disturbance rejection capabilities of the 
inferential controller are seen clearly in these graphs. Note that 
because of the longer time constant and large time delay in the 
outer loop of the cascade scheme, this controller cannot be 
expected to respond quickly to input disturbances. Feedback 
control using t is actually better than direct feedback control of y. 

l.&-27s (6s + 1) 
dt dye = 40s + 1 1.27 
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6. Case Study: Application of MPIC to an Injection Pultrusion 
PrOCeSS 

In this section, we demonstrate the application of inferential model 
predictive control to a simulated Injection Pultrusion (IP) process. 
We first describe the process and present the control problem. The 
control strategy is then discussed with details about selection of 
inferential measurements, generation of dynamic matrices and 
building of the inferential estimator. We present closed loop 
results to validate the control scheme and discuss how infrequent 
measurements of primary variable can be used for better control. 
We also show how the predictive capabilities of the formulation 
can help the plant operator to better visualize the process behavior 
into the future. 

R e f o ~ n g  ConErolledResin Guide Injection 

Figure 14. Injection pultrusion process 

In IP, the open resin bath of traditional pultrusion is replaced by a 
machined cavity attached to the curing die, as shown 
schematically in Figure 14. Preformed dry fibers are continuously 
pulled into the heated die and resin is injected at high pressures 
through the cavity into the fiber bundle. The fully impregnated 
preform is then pulled into a multi-zone heating region of the die 
where the resin cures around the fibers forming a solid composite. 
The process variables of interest from a control system point of 
view are summarized in Table 2. 

Description Variable Type 

Temperature in Measured secondary variable 
Zone 1 
Temperature in Measured secondary variable 
Zone 2 
Temperature in Measured secondary variable 
Zone 3 
Heater inputs to the Manipulated variables to 

die control 
I temperatures 

Pull speed I Optimized manipulated I variable 
I Measured secondary variable Pull Force 

Injection Pressure I Manipulated input 
Void Content I Infrequent quality 

I measurement 
I Visually observed processing Backflow pressure 

Mechanical 
measurement 

Table 2. Description of Process Variables 

6.1 Control Problem 

The control objective is to maximize production rates while 
maintaining ‘consistently good quality’ of the final part and 
meeting process constraints shown below. The quality variables of 
interest in a composite are properties such as degree of cure and 
void content which determine the part strength. The manipulated 
variables, and measurements associated with IP are shown in 
Table 2. The major control objectives are: 

1. Control the cure at the exit of the die to the gelpoint of the 
resin. If the gelpoint occurs within the die, surface imperfections 
due to friction might appear. In a worse case, material might 
freeze up in the die and shut down production. Cure at the die exit 
shouldn’t be below the gelpoint in order to avoid part breakage 
and reduction of strength of the composite. The gelpoint of the 
resin system is taken as 0.5. 
Preventing backflow of resin from the front end of die is a major 
concern. This can happen if the injection pressure is too high for 
the pull velocity being used. 
2. Avoid void formation which causes reduction of strength in the 
part. This can happen if the injection pressure is too low for the 
pull velocity being used. 
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3. Avoid high temperatures in the composite to prevent resin 
degradation. 

The key disturbances affecting the process are the variations in 
reaction kinetics due to changes in the resin formulation. 

6.2 Model-Predictive Inferential Control 

4 

An inferential control strategy which can detect the disturbance 
and take corrective action before the cure at the die exit itself 
starts falling steeply is preferable in order to minimize the amount 
of off-spec product formed. In the worst case scenario, such a 
strategy can serve as a useful tool to the plant operator to prevent 
catastrophic scenarios such as resin freezing up within the interior 
of the die. 

Optimization Layer 4 

V 

In the MPIC approach, we have a steady-state linear program (LP) 
layer which uses a steady state model of the process to determine 
optimal operating conditions and an MPC layer as shown in 
Figure 15 which controls cure in presence of disturbances by 
manipulating the pull speed. As mentioned previously, this linear 
program tries to maximize the pull speed, and would drive the 
process to the upper bounds on the temperature setpoints and the 
lower bound on the injection pressure. For the MPC layer, the 
objective is to control the exit cure by manipulating the pull speed 
and injection pressure. Previous studies (Voorakaranam et al) 
show that the injection pressure has to follow a linear relationship 
with the pull speed primarily to prevent back flow and void 
formation. The injection pressure has negligible effect on the exit 
cure. Hence the control problem in the MPC layer simplifies to a 
single input single output problem. 

MPC Layer 4 A 
T I ,  T2u. qi.qz&. 
T3-9 Pinj 

Pullspeed, V,, 

v 
Regulatory Control Layer t 

I Plant I 

A- 

Ti,Tz, T3, V 

Figure 15. LP-MPC framework for IP Process 

q1.qZ. q3, pull force F 

The MPC equations relating cure and pullspeed over a projection 
horizon P can be put in matrix notation as 

P y = y  + A u + D y  - 

D -G D + G  D + G  D 
y -=yql 91 =yq2 Q2 =yq3 Q3 

(35) 

Similar to the equations for variation of primary variable, the 
equations for variation of secondary flux variable can be written 
as: 

The effect of disturbances on the secondary variables can be 
obtained as: 

dql,k = 91meas,k - ql,k 
P 

D 

D 

dq3,k = q3meas,k -q3,kr 

(37) 
All values of the disturbance effect after time k are assumed to 
stay constant after time k 

= d  = d  ......... d 

= d  = d  ......... d 

= d  d = d  ......... 

- - 
q l , k + l  q 1 , k + 2  q19k + P 

q 2 , k + l  q 2 , k + 2  - q29k + P 

q 3 , k + l  q 3 , k + 2  - q3'k + P 

- 

- 

(38) 

where the effect of the disturbance on the cure, Dy can be 
estimated from the effect of the disturbance on the secondary flux 
measurements ql , q2 and q3. 
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D =  
q1 

D =  
q2 

0.3 

Inferential 
no Control 
Infer+feedb 
sbtpoint 

Step changes in the pullspeed are simulated keeping the value of 
disturbances constant in the model. The primary variables and 0 500 1000 1500 

time secondary variables are recorded as function of time. The dynamic 
I . .  _. 

matrix 4 relating the primary variable with the manipulated Figure 16. Performance of IFC with infrequent feedback - 
variable, and the dynamic matrices gqIu , gqlU and g43u 6.4 Results 

relating the three secondary variables with the manipulated 
variable can be estimated using standard identification procedures. 

6.3 Building of Inferential Estimator 

A step change is introduced in the activation energy (the 
disturbance variable) while keeping the pullspeed (manipulated 
variable) constant. The resulting profiles of the primary and 
secondary variables recorded as deviations from their base values. 
A dynamic model between the primary and secondary variables 
can then formulated in the form of equation (26). Based on the 
response time of the exit cure variable, fifty impulse response 
coefficients are identified for each secondary variable- primary 
variable relationship. The first nb=50 coefficients of solution 
vector X give the impulse response between the effect of the 
disturbance on the first secondary variable and the effect of 
disturbance on the primary variable. The next nb coefficients 
correspond to the second secondary variable. The last nb 
coefficients to the third secondary variable. The impulse response 
matrices can then be integrated to get the step response coefficient 
dynamic matrices G ,G and G respectively. A 

=y91 =y92 = Y93 

Figure 16 shows the performance of the control system for a 25% 
increase in a second kinetic rate constant. This disturbance is 
qualitatively of a different nature than any of the disturbances 
considered above. It pertains to the reaction kinetics for a degree 
of cure greater than 0.3, and hence it’s effect will only be felt 
towards the end of zone 2 when the degree of cure crosses this 
value. In contrast, the disturbances based on which our estimator 
had been built pertain to cure kinetics below a degree of cure of 
0.3 and whose effect is felt starting right at the resin injection port. 
The MPIC still does a reasonable job in recovering from the 
disturbance but an offset is present. This is to be expected since 
estimator is not perfect. To get rid of the offset, it is necessary to 
introduce feedback correction based on cure. However this need 
not be available at the same sampling rate as our inferential 
control implementation rate. Even occasional measurements of 
cure will be able to substantially cancel out any steady-state errors. 
Such a situation is also demonstrated in the same figure, where a 
single measurement of the degree of cure available at time 
t=1000s is used to provide feedback correction for effective 
steady-state offset elimination. This example demonstrates that the 
importance of even infrequent quality measurements. 

predictive horizon of 50, a control horizon of 1 and a sample time 
of 5 seconds is employed. 

As mentioned earlier, a principal component analysis (PCA) needs 
to be performed first if the multiple measurements used as inputs 
to the estimator are correlated. A PCA is performed between the 
matrices E and D given in equation 26. The first 5 principal 

components are retained as they provide sufficient estimation 
accuracy in terms of capturing the variance in the dependent and 
independent variables. 

The reason for the good disturbance rejection is due to the fast 
response of heater inputs to the disturbance. The estimator is able 
to sense the effect of the disturbance on q and take anticipatory 
control action. The model predictive inferential control scheme 
works very well for a range of different types of disturbances 
which affect the primary variable in a similar way (for instance 
most disturbances entering through the resin feed). 

A further use of the inferential MPC formulation is that at each 
instant of time we have a projection of how the process is going to 
behave in the future. Therefore, even if the operator chooses to 
disable automatic control and prefers manual control, he would 
still be able to get the future projected trajectories of the process 
which would enable him to make better decisions. Figure 17 
shows such an instance of the snapshots of the exit degree of cure 
projected into a future time horizon of 400s at different instants of 

- 
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time (without any feedback control action manipulating V. The 
feedforward nature of the estimator clearly becomes apparent in 
the Figure 34 as we start getting very reasonable estimates of the 
process behavior into the future before the effect of the 
disturbance is felt at the exit of the die. 

Degree ot cure 

0.52 
_. 

4. 100s 

0.5 

0.421 I 
0 50 100 150 200 250 300 350 400 

time (sec) 

Figure 17. Snapshots of predicted future behavior of exit cure at 
different times 

7. CONCLUSION 

In this paper, we presented a model predictive inferential control 
strategy to tackle the problem of controlling process upsets due to 
unmeasured disturbances. A case study of the Shell challenge 
problem was used to highlight the advantages of the control 
scheme compared to conventional control strategies. We showed 
that inferential control is a powerful tool that can be applied to a 
wide variety of systems. When combined with the powerful 
framework of Model Predictive Control strategy, Inferential 
Control becomes highly versatile and can overcome the 
difficulties associated with the inability to measure the primary 
variable. Another often overlooked quality of inferential control is 
its feedforward nature, which makes it attractive to use even when 
the primary variable is measured. 

NOMENCLATURE 

A = plant dynamic matrix between input and primary variable 
bi, b2, .... b, = estimator coefficients 
C = dynamic matrix between input and secondary variable. 

d= disturbance 
D, = vector of effect of disturbances on primary variable 
Dt = vector of effect of disturbances on secondary variable 
d, =effect of disturbance on secondary variable t 

d ,  , dq2 , dq, 
and q 3  
d, = effect of disturbance on primary variable y 

- - 

- 

= effect of disturbance on the heat inputs ql, qz 

dye = estimate of the effect of disturbance on y 
E = matrix of disturbance effects on secondary variable 
f = filter transfer function 
f, = nonlinear plant model 

= transfer function for secondary variable controller 
g,, = transfer function for primary variable controller 
gdt = transfer function between disturbance and secondary 
variable 
gd, = transfer function between disturbance and primary variable 
gut = transfer function between input and secondary variable 
guy = transfer function between input and primary variable 
g, = nonlinear estimator model 
g2 = linear model between maximum injection pressure and 
velocity 
h = number of secondary measurements 
k = current instant of time 
nb = no of estimator coefficients 
p = prediction horizon 
t = secondary variable 
t = vector of secondary variables 
t"' = measured value of secondary variable 
tp = predicted value of secondary variable 
tp = vector of predicted values of secondary variable 
U = manipulated variable (input) 
Au = step change in input 
Au = vector of step changes in input over control horizon 
X = vector of estimator coefficients 
y = primary variable (exit degree of cure for the IP process) 
Ay = deviation in primary variable from steady-state. 

y = estimate of primary variable y 
y' = predicted value of y 
yp = vector of predicted values of primary variable 
y' = setpoint on y 
yr = vector of reference setpoint trajectory of primary variable 
yset = setpoint on primary variable 

- - 

- 

Greek symbols 
a =estimator 
Zf = filter time constant 
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