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Abstract: This article presents an application of Model Predictive Control (MPC) in 

chemical industry. An implementation of multivariable generalized predictive control in 

a simulated process (in Hysys software) was developed as part of a complete research 

about MPC application in petrochemical industry. The process consists of a debutanizer 

distillation column. This column was identified (using a second order linear model) with 

multivariable recursive least squares algorithm to estimate its parameters. Copyright © 

2006 SICOP 
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1. INTRODUCTION 
 

The control system used in petrochemical industry 

(Petrobras, Guamaré-RN) is only regulatory control 

(classic PID). Furthermore, PIDs used are considered 

of an isolated form (without consider couplings 

between control loops). This consideration is not 

recommended because the system performance will 

be poor. The most part of industrial processes have an 

amount of variables that may be controlled and others 

may be manipulated. The reasonable choice of theses 

variables is an important step to control system 

performance.  

When one manipulated variable has effect over two or 

more controlled variable, we can say that process is 

coupled. Some approaches apply decoupling 

compensators to attenuate the coupling between 

control loops. In projects of decoupling 

compensators, the number of inputs must be equal the 

number of outputs. Furthermore, in processes with 

complex dynamic, these compensators are not 

achievable, Camacho & Bordons (1999). 

Multivariable predictive control is the most suitable 

control technique applied to control chemical 

processes, because it considers time delay, coupling 

(in multivariable Auto Regressive, Integral, Moving 

Average, with exogenous input model), and may be 

applied in unstables processes and with non minimal 

phase processes. Other advantage is the treatment of 

constrains (that is very easy to include in this 

algorithm). 

Multivariable predictive control derives of 

Generalized Predictive Control, proposed by Clarke 

(1987). Other results applying GPC are showed in 

Richalet et al., (1993). A recent application of 

constrained Generalized Predictive Control in 

petrochemical industry is showed in Volk et al. 

(2004). Other important application is showed in 

Almeida et al. (2000). 

Debutanizer distillation column is usually used to 

remove the light components from the gasoline 

stream to produce Liquefied Petroleum Gas (LPG). It 

produces either stabilized gasoline that can be 

included in pool gasoline. In this article is used a 

distillation column simulated in Hysys software. Both 

identification and control algorithm, developed in 

MATLAB®, communicate with Hysys software 

through Dynamic Data Exchange (DDE) protocol. 
 

2. FORMULATION OF MULTIVARIABLE 

GENERALIZED PREDICTIVE CONTROL 

 

Generalized predictive control is based in linear 

models that describe the process behaviour.  The 

choice of linear model depends of process. Some 

processes have dynamics that cannot be represented 

by a single linear model. In these cases, other models, 

like bilinear models, showed in Goodhart et al. (1994) 

or compensated models showed in Fontes et al. 

(2002) and Fontes et al. (2004), may be used.  

In this article, a multivariable linear model has been 

represented the process with a reasonable precision. 

The model considered is ARIMAX (Auto Regressive, 

Integral, Moving Average, with exogenous Input) 

model. 
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2.1 Multivariable Model 
 

Multivariable ARIMAX model with m-inputs and n-

outputs may be written as: 
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where )( 1−
qA , )( 1−

qB  and )( 1−
qC  are monic-

polynomial matrices of dimensions nn × , mn ×  and 

nn × , respectively. These matrices are given by: 
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The operator ∆  is defined as 11 −
−=∆ q , )(ky  is the 

output vector of dimension 1×n , )(ku  is the input 

vector of dimension 1×m  and )(ke  is the vector of 

white noise with zero mean. When process has 

transport delay, the model must include this delay 

through an interaction matrix. 

  

2.2 Objective Function 

 

GPC algorithm calculates a sequence of control 

effort. This sequence is obtained by the minimization 

of an objective function given by: 
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where 1N  is the minimum prediction horizon, 2N  is 

the prediction horizon, 3N  is the control horizon, 

)(ˆ iky +  is the optimum i-step ahead predicted 

output, )( ikr +  is the future reference trajectory, R  

and Q  are weighting matrixes of error signal and 

control effort, respectively. R  and Q  must be 

positive definite. The norm showed in equation (5) is 

given by: 
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2.3 The Predictor 

 

The case used in this article is when 
nn

I)C(q
×

−
=

1 . 

The reason for this is that the colouring polynomials 

are very difficult to estimate with sufficient accuracy 

in practice according to Camacho & Bourdons 

(1999). The optimum output prediction, i-step ahead, 

may be written by the following expression: 
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where )( 1−qF j  and )( 1−qE j  are polynomial matrices 

and may be calculated by Diophantine equation: 
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where  
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The model considered is linear and causal. For this 

reason, we can separate output prediction in two 

parts: free response and forced response. Free 

response in step k  considers zero the future variation 

in inputs. Forced response considers only future 

variation of inputs. The predictor may be rewriting 

making: 
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where the degree of )( 1−
qGi  is less than i . The end 

expression of predictor is given by: 
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The first term of (10) is the forced response and the 

two last is the free response. 

 

2.4 The Control Law 

 

Equation (10) may be written of matrix form: 

 

fGuy +=                           (12) 

 
where f  represents the free response and G  

represents the forced response matrix. The 

minimization of cost function showed in equation (5) 

is obtained in analytical form: 
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If there are no constraints, the optimum control law 

can be expressed as: 
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Because of the receding control horizon, only )(ku∆  

is needed at instant k . Thus, only the first m  rows of 

equation (12) are computed. 

 

3. IDENTIFICATION OF PROCESS MODEL AND 

THE CONTROL STRATEGY 

 

The distillation column developed is Hysys is showed 

in figure 1. 
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Fig.1. Debutanizer distillation column developed in 

Hysys software. 

 

The process variables chosen are concentration of i-

pentene in butanes stream and concentration of i-

butene in C5 stream. The manipulated variables 

chosen are reflux flow rate (manipulating the setpoint 

of FIC-100 in hm /3 ) and thermal load (manipulating 

the setpoint of TIC-100 in C
o ). Steps were applied in 

both manipulated variable to identify the dominant 

dynamic. Figure 2 shows the behaviour of i-pentane 

concentration, applying a step in reflux flow rate 

(FIC-100 setpoint). 

 

 
Fig.2. Concentration of i-pentane (x100) applying a 

±5% step in reflux flow rate. 

 

Figure 3 shows the behaviour of i-butene 

concentration, applying a step in reflux flow rate 

(FIC-100 setpoint). 

 

 
Fig.3. Concentration of i-butene (x100) applying a 

±5% step in reflux flow rate. 

 

The percent change in TIC-100 setpoint was ±3% to 

not cause saturation in controllers. The process 

behaviours like a second order system. The time 

response is around 300 minutes in both loops. The 

best sample rate considered in estimation is 4 

minutes. 

Figure 4 shows the behaviour of i-pentene 

concentration, applying a step in reboiler temperature 

(TIC-100 setpoint). 

 

 
Fig.4. Concentration of i-pentene (x100) applying a 

±3% step in reboiler temperature. 

 

Figure 5 shows the behaviour of i-butene 

concentration, applying a step in reboiler temperature 

(TIC-100 setpoint). 

 

 
 

Fig.5. Concentration of i-butene (x100) applying a 

±3% step in reboiler temperature. 

 

Recursive Least Squares returned the following 

parameters (showed in the model): 
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4. RESULTS 

 

The model identified and showed in equations (13) 

and (14) is an incremental model. The implemented 

algorithm reads from Hysys the deviation of process 

variables (in relation of operation point) and 

calculates the free response. The free response is used 

to calculate the increment of manipulated variable. A 

previous implementation (only simulation) was 

developed to try obtaining an adequate tuning. A 

good set of tuning parameters is: 
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A reference (deviation) of 12% in relation of i-

pentene concentration was applied as reference in 

algorithm. In C5 stream, i-butene concentration was 

not disturbed. The process behaviour (read from 

Hysys) is showed in figure 6. Concentration reference 

of  i-butene was not changed. 

 

 
Fig.6. Concentration of i-pentene and i-butene 

controlled by MIMO GPC. 

 

Figure 7 shows the control effort (FIC-100 Setpoint). 

 

 

Fig.7. FIC-100 setpoint ( hm
3 ) calculated by MIMO 

GPC 

 

Figure 8 shows the control effort (TIC-100 Setpoint). 

 

 

Fig.8. TIC-100 setpoint ( C
o ) calculated by MIMO 

GPC 

 

Other result, changing both references (disturbing 

12% in i-pentene and 15% in i-butene), is showed in 

figure 9. 

 

 
Fig.9. Concentration of i-pentene and i-butene 

controlled by MIMO GPC. 

 

Figure 10 shows the control effort (FIC 100 Setpoint). 

 

 

Fig.10. FIC-100 setpoint ( hm
3 ) calculated by 

MIMO GPC 

 

Figure 11 shows the control effort (TIC 100 

Setpoint). 

 

 

Fig.11. TIC-100 setpoint ( Co
) calculated by MIMO 

GPC 

 

Results show that using Multivariable GPC, time 

response was decreased around 57%. Without GPC 

controller the process has response time of 300 

minutes and, with GPC, response time is around 130 

minutes. It is clear the increase in performance of 

column. Due to the good choice of parameters tuning, 

control effort does violate constraints. 
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5. CONCLUSIONS 

 

This paper shows the application of multivariable 

predictive control in petrochemical industry. This 

research indents to confirm that predictive control is 

an excellent technique and that must be better 

explored by industry. It intends to research alternative 

techniques of non linear predictive control. Academy 

has showed goods results that justify the use of these 

control algorithms. The next step of research is to 

identify the model (simulated in Hysys) of a 

debutanizer distillation column localized in Unit of 

Natural Gas Production (UPGN2) and apply non 

linear predictive control techniques. This unit belongs 

to Petrobras Company in Guamaré-RN. 
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