CONTROLE AVANÇADO DE PROCESSOS INDUSTRIAIS DE PETRÓLEO UTILIZANDO UM SISTEMA DE INFERÊNCIA NEURO-FUZZY PARA GERAÇÃO DINÂMICA DE SET-POINTS

José Soares Batista Lopes¹
Fábio Meneghetti Ugulino de Araújo²
André Laurindo Maitelli³
Oscar Gabriel Filho⁴

Universidade Federal do Rio Grande do Norte^{1,2,3} Centro de Tecnológico - Departamento de Controle e Automação Campus Universitário, s/n, Lagoa Nova - 59072-970 - Natal - RN – Brasil

Universidade Potiguar ⁴
Unidade Nascimento de Castro - Av. Nascimento de Castro, nº 1597
Dix -Sept Rosado, 59054-180- Natal-RN- Brasil

jsoares@dca.ufrn.br¹ meneghet@dca.ufrn.br² maitelli@dca.ufrn.br³ oscargf@unp.br⁴

Abstract – Este artigo apresenta o projeto de um sistema de inferência nebuloso para geração de set-points. Aplicado a um processo não-linear e multivariável que utiliza o controle regulatório implementado no SLC 5/03 da Allen Bradley. A inferência dos set-points é realizada em um computador denominado "Controle Avançado" e transmitido para o sistema supervisório através da Rede Ethernet, de tal forma que a estrutura física previamente existente não precisa ser alterada. Os resultados práticos da implementação em tempo real, são apresentados no final deste artigo.

Keywords – Anfis, Comunicação, Geração de setpoints, Instrumentação Industrial, Processo Não linear.

I. INTRODUÇÃO

A necessidade de se controlar sistemas e processos físicos existe desde tempos remotos. O controle manual, primeira forma de controle utilizada pelo homem, e ainda presente em muitos processos, apresenta a necessidade de um operador humano que deve conhecer o sistema e ter razoável experiência e habilidade. Com o crescente aumento no grau de sofisticação das atividades humanas surgiu o interesse e a necessidade de automatizar ou semi-automatizar determinados processos, isso foi possível a partir do desenvolvimento científico e tecnológico, que dentre os diversos conhecimentos nos trouxe as teorias clássicas de controle [1].

Contudo, com o avanço da tecnologia, os sistemas e processos ficaram ainda mais complexos, tornando ineficaz ou até mesmo impossível a utilização dos controladores convencionais obtidos a partir da teoria clássica. Isso desencadeou uma busca por novos métodos e estratégias de controle tais como: controle multivariável, controle adaptativo, controle preditivo e sistemas de controle inteligente [2].

A utilização de sistemas inteligentes em controle tem despertado grande interesse nos últimos anos [3]. Dentre as técnicas mais utilizadas estão a Lógica Nebulosa ("fuzzy") teoricamente, desenvolvido por Zadeh [4] e explorada por Mandani [5] em 1970. As aplicações da Lógica Fuzzy tiveram início no Japão [6]. Os sistemas Neuro-Fuzzy estão entre os sistemas híbridos mais pesquisados na atualidade como pode ser observado nos trabalhos [9], [10], [11]-[14].

Este artigo trabalha com essas técnicas, para o desenvolvimento de um sistema neuro-fuzzy para a inferência de set-points para um sistema de nível multivariável e não-linear controlado por PIDs (Controle Regulatório).

II. ESTRUTUA FÍSICA

A infra-estrutura utilizada foi montada para o projeto "Controle Avançado Aplicado a Processos Industriais de Petróleo e Gás", aprovado no Edital CTPETRO/CNPq 01/2003. O Controlador Lógico Programável (CLP) utilizado é o modelo SLC 5/03 da Allen Bradley que se comunica com o supervisório através da porta de comunicação RS-232 [8] como descritos na figura 1.

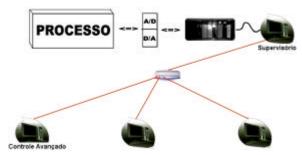


Fig. 1. Estrutura Física do Projeto Controle Avançado.

A estrutura do processo corresponde a um sistema de tanques acoplados da Quanser [15], modificado, com dois

motores que funcionam independentes um do outro, Figura 2, de tal maneira que o sistema se torna multivariável.

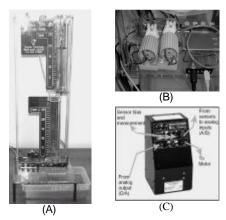


Fig. 2. Sistema de Tanques (A), Bombas (B) e o Módulo de Potência (C) para a comunicação com CLP.

As bombas e os sensores de nível comunicam-se com o CLP através de um módulo amplificador de potência, UPM 2405-240, também da Quanser [15]. Os níveis, em centímetros, são transmitidos para o CLP através de um sinal de tensão, com fator de escala de IV/6,25 cm. Já o sinal de controle em volts, gerado no CLP, é transmitido para as bombas amplificado em cinco vezes.

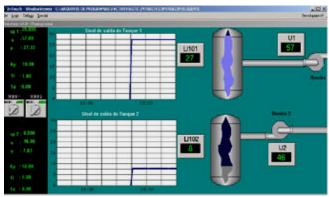


Fig. 3. Sistema de Tanques e bombas.

O Sistema Supervisório foi o Intouch, mostrado na Figura 3. Trata-se de um software que proporciona a supervisão de um processo, sendo o responsável pela comunicação com o CLP [8]. Nele é realizada a supervisão dos parâmetros do controle regulatório que se apresentam previamente sintonizados. No sistema supervisório existe a possibilidade do operador escolher: o ajuste manual do set-point ou aquele gerado pelo mecanismo de inferência neuro-fuzzy, onde o seu processamento se encontra no computador denominado "Controle Avançado" da Figura 1.

III. MECANISMO DE INFERÊNCIA

A. Introdução

O sistema de tanques simula uma unidade de produção que utiliza os níveis dos tanques para o controle total da produção e da concentração. O desenvolvimento do

mecanismo de inferência neuro-fuzzy baseou-se em heurísticas que relaciona uma produção e uma concentração, ambas hipotéticas, com os níveis desejados para os tanques (set-points).

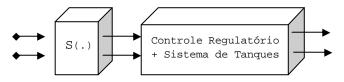


Fig. 4. Sistema Controle Avançado.

Na Figura 4 o primeiro bloco tem como entradas a produção e a concentração e como saídas os valores de setpoints para o controle regulatório.

A figura 5 descreve o diagrama de blocos da figura 4 com a representação do sistema de nível.

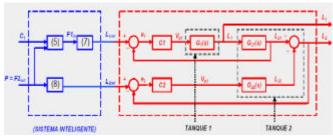


Fig. 5 – Diagrama do sistema de controle avançado.

A tabela 1 descreve as fórmulas (5), (7) e (8) da figura 5 que foram modelados para gerar o nível do tanque 1 e 2 do sistema de controle em cascata com acoplamento.

Tabela 1 – Formulas no regime permanente para o sistema de tanques.

A) FORMULARIO									
A.1) CONCENTRAÇÃO:	A.2) PRODUÇAO:	A.3) NIVEL:	A.3) NIVEL:						
$V_2 = V_{21} + V_{22} \tag{1}$	P = F2 _{out}	$L_i = \frac{F1_{in}^2}{2ga_i^2}$	<i>(</i> 7)						
$C_{t} = \frac{V_{2t}}{V_{2}} \tag{2}$	F1 _{in} = F1 _{out}								
$C_2 = \frac{V_{22}}{V_2}$ (3)	$F1_{in} = C_1 F2_{out} $	$L_2 = \frac{F2_{\text{out}}^2}{2ga_2^2}$	(8)						
$C_1 + C_2 = 1 \tag{4}$	$F2_{in} = (1 - C_1)F2_{out}$ (6)								

Em que:

- V representa o volume dos tanques;
- *C* a concentração hipotética;
- F a vazão dos tanques;
- g a gravidade;
- a orifício da vazão para cada tanque.

A Figura 6 descreve o comportamento da saída do tanque 1 em relação a produção e a concentração comportando-se como uma relação quadrática.

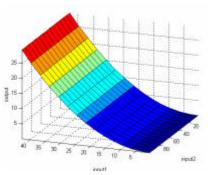


Fig. 6. Comportamento da saída do tanque 1.

A Figura 7 descreve o comportamento da saída do tanque 2 comportando-se com uma bi-quadrática com um ponto de sela em re lação à produção e a concentração.

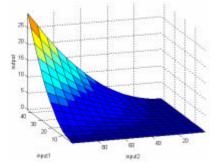


Fig. 7. Comportamento da saída do Tanque2.

Os conjuntos fuzzy são utilizados para representar conceitos vagos, imprecisos ou incertos [2], [16], [17]. Utilizou-se a priori os sistemas fuzzy para representar o conhecimento do especialista e interpolar decisões a partir de entradas contendo incertezas. A Figura 8 mostra a implementação do sistema no Simulink/Matlab.

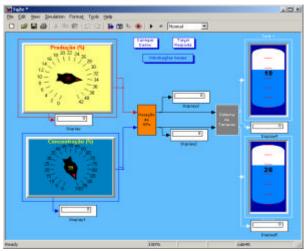


Figura 8 – Sistema de controle de nível - MIMO.

- Bloco amarelo: representa a Produção com uma faixa de [0-43] cm³/s;
- Bloco azul: representa a Concentração [0-100] %;
- Bloco laranja: representa o Gerador de set-points (SPs) e diz respeito a lógica das gerações de set-points que estão ligados com o bloco cinza.

 Bloco cinza: contém toda a lógica dos controladores clássicos para se chegar aos níveis desejados inferidos pelo bloco laranja, alem da dinâmica.

A partir dos resultados simulados conclui-se que o ajuste dos parâmetros manualmente não foi satisfatório. Observe os resultados na Figura 9.

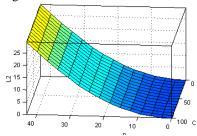


Fig. 9. Relação da Produção versos Concentração fuzzy.

A Figura 9 mostra o resultado da relação quadrática a partir do ajuste de parâmetros fuzzy.

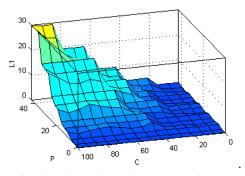


Fig. 10. Relação da Produção versos Concentração fuzzy.

A Figura 10 mostra os resultados, ainda insatisfatórios de exaustivas tentativas para ajustar manualmente um sistema fuzzy do tipo Sugeno proposto por Takagi-Sugeno (1985) e Sugeno&Kang(1988)[18], onde os resultados atestam a necessidade de aplicações de ferramentas de auto-sintonia, como é o caso das técnicas neuro-fuzzy [21],[22].

B. Estrutura ANFIS

O sistema neuro-fuzzy escolhido foi o sistema criado por J. S Roger Jang chamado ANFIS (Adaptive Network-based Fuzzy Inference System) [20] que faz uma adaptação dos valores de entrada e saída para uma base de regra que interliga todas as entradas e saídas, formando assim uma base de regras robusta que cria um sistema de inferência fuzzy que contemp la todas as possíveis entradas.

Os sistemas neuro-fuzzy podem ser analisados como sistema de inferência nebuloso, implementados sob a arquitetura das redes neurais. O objetivo fundamental é obter as vantagens da lógica nebulosa no que respeita ao processo de raciocínio, e com a capacidade de aprendizagem das redes neurais [19]. A estrutura do ANFIS da Figura 11 é baseada no modelo Takagi-Sugeno de primeira ordem [18].

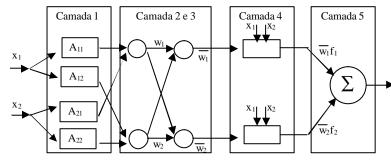


Fig. 11. Estrutura do ANFIS.

Considerando os seguintes exemplos de regra de um modelo Takagi-Sugeno de primeira ordem para sistemas fuzzy. Tendo duas variáveis de entrada x e y, uma saída f e as seguintes regras:

Regra 1: SE x é A_1 e y é B1 ENTÃO f_1 = $px+qy+r_1$ Regra 2: SE x é A_2 e y é B2 ENTÃO f_2 = $px+qy+r_2$

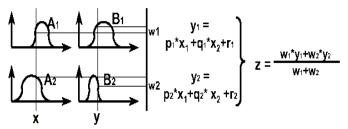


Fig. 12 - Sistema de Inferência TS de primeira ordem.

Sabendo que o modelo TS é a base de da estrutura ANFIS, é sugerido que os parâmetros p, q e r sejam identificados através do método de estimação por (LSE – Estimator Least Square [7]) de acordo com os seguintes passos [20]:

Camada 1º - Calcula o grau de pertinência com que as entradas satisfazem os valores ou termos lingüísticos associado a estes nós.

$$w_{t} = \mathbf{m}_{Ai}(x)\mathbf{m}_{Bi}(y), i = 1, 2.$$
 (1)

Camada 2º - Cada nó desta camada corresponde a uma regra e calcula com que grau o conseqüente da regra esta sendo atendido, ou seja, são as implicações das premissas.

$$f(x,y) = \frac{w_1(x,y)f_1(x,y) + w_2(x,y)f_2(x,y)}{w_1(x,y) + w_2(x,y)} \Rightarrow \frac{w_1f_1 + w_2f_2}{w_1 + w_2}$$
 (2)

Camada 3º - Esta camada realiza uma normalização dos valores da camada anterior.

$$\overline{W}_t = \frac{W_t}{W_1 + W_2} \tag{3}$$

Camada 4º - Nesta camada as saídas dos neurônios são calculados pelo produto dos valores dos conseqüentes da regra.

Camada 5º - Os nós desta última camada calculam a saída do ANFIS. Podendo ser rescrito como:

$$f = \overline{W}_1 f_1 + \overline{W}_2 f_2 \tag{4}$$

Esta estrutura pode ser treinada por qualquer mecanismo de aprendizagem empregado nas RNAs. Neste trabalho o treinamento foi realizado em duas etapas:

- Etapa 1: Os parâmetros dos antecedentes ficam fixos e os conseqüentes são ajustados pelo método dos Mínimos Quadrados;
- Etapa 2 Os parâmetros dos consequentes ficam fixos e os antecedentes são ajustados pelo algoritmo backpropagation.

IV. RESULTADOS

Através de simulações obtiveram-se os resultados nas figuras para o mecanismo de inferência neuro-fuzzy. As Figuras 13 e 14 descrevem as funções de pertinências (MFs) dos antecedentes antes e depois do treinamento.

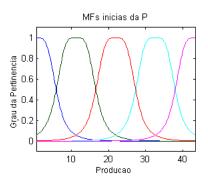


Fig. 13(A). Pertinências da Produção antes do treinamento.

A Figura 13(A) apresenta cinco pertinências espaçadas igualmente antes do treinamento do tipo gaussianas.

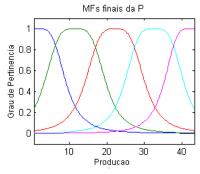


Fig. 13(B). Pertinências da Produção depois do treinamento.

A Figura 13(B) mostra o ajuste das pertinências apos o treinamento do sistema neuro-fuzzy.

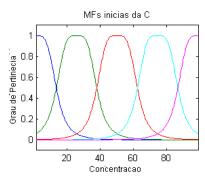


Fig. 14(A). Pertinências da concentração antes do treinamento.

A Figura 14(A) e 14(B) descrevem as MFs da concentração antes e depois do treinamento.

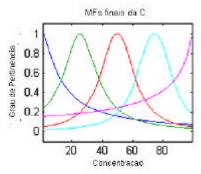


Fig. 14(B). Pertinências da concentração depois do treinamento.

Após o ajuste das premissas e dos conseqüentes obtiveram-se os treinamentos como observados nos gráficos das Figuras 15 e 16 com as respectivas curvas de erro.

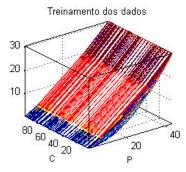


Fig. 15 Curva de treinamento referente ao tanque 1.

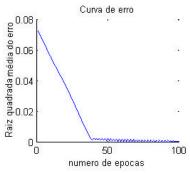


Fig. 16. Curva do erro do tanque 1

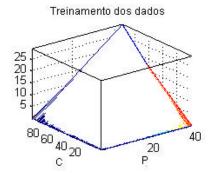


Fig. 17. Curva de treinamento referente ao tanque 2.

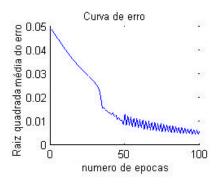


Fig. 18. Curva do erro do tanque 2.

Testes práticos com o mecanismo de inferência são apresentados na Tabela 1 para alguns valores de produção e concentração escolhidos de uma forma não-linear.

Tabela 1 – Dados gerados pelo mecanismo de inferência neuro-fuzzy onde (D) significa desejado e (M) medido

(D) significa desejado e (M) medido.									
P	C	L1(D)	L2(D)	L1(M)	L2(M)	Erro(L1%)	Erro(L2%)		
18.00	98.00	5.03	5.20	5.00	5.00	0.61%	3.92%		
24.70	55.80	3.03	9.79	2.78	9.65	8.37%	1.52%		
36.90	89.50	17.49	21.87	17.30	21.62	1.08%	1.14%		
42.30	60.00	10.36	28.74	10.20	28.61	1.54%	0.45%		
32.40	25.40	1.09	16.86	1.40	16.76	-28.20%	0.59%		
4.33	46.78	0.065	0.30	0.10	0.50	53.85%	66.67%		
29.24	77.15	8.00	13.75	8.20	13.30	0.34%	3.27%		
32.54	87.42	13.00	17.00	13.00	17.00	0.00%	0.00%		
38.00	30.59	2.17	23.15	2.20	23.10	1.38%	0.22%		
40.75	99.61	26.50	26.80	26.50	26.90	0.00%	0.37%		
42.48	100.0	28.98	28.99	29.00	29.00	0.07%	0.03%		
25.88	70.19	5.30	10.75	5.50	10.80	3.77%	0.47%		
28.27	92.45	10.96	12.86	11.00	12.90	0.36%	0.31%		
31.23	53.29	4.45	15.66	4.50	15.80	1.12%	0.89%		
11.99	38.65	0.34	2.31	0.50	2.50	47.06%	8.23%		
34.58	99.36	18.96	19.20	20.00	18.00	5.49%	6.25%		
15.70	27.46	0.30	3.90	0.34	4.50	13.33%	15.38%		
23.56	57.07	2.90	8.92	2.00	8.50	31.03%	4.71%		
27.46	73.99	7.00	12.13	7.00	12.80	5.64%	5.52%		
19.84	42.03	1.12	6.30	1.50	6.85	33.93%	8.73%		
23.87	73.33	4.92	9.16	5.01	9.62	1.83%	5.02%		
11.85	83.62	1.50	2.15	1.56	2.00	4.00%	6.98%		
7.82	67.28	0.44	0.98	0.50	1.00	13.64%	2.04%		
28.00	76.00	7.30	12.59	6.45	11.92	11.66%	5.32%		
							·		

A Tabela 1 nos mostra que o mecanismo informou os setpoints desejados ocorrendo erro devido às incertezas dos sensores, ruído e não-linearidades do sistema e do controle regulatório.

Fig. 12. Sistema completo com supervisório, CLP e processo.

A Figura 12 demonstra o funcionamento global do sistema envolvendo o mecanismo de inferência, o supervisório, o controle regulatório (CLP) e o processo.

V. CONCLUSÃO

Este artigo apresenta a implementação de um mecanismo de inferência neuro-fuzzy que permite a representação do conhecimento de uma forma a estruturar as regras que compõem o modelo Takagi-Sugeno.

O Sistema de inferência proposto mostrou ser capaz de auxiliar ou mesmo substituir operadores humanos na construção em tempo real de relações entre especificações de processo (produção e concentração) e variáveis controladas (níveis). O mecanismo de aprendizado mostrou-se eficiente.

Em todos os casos implementados a resposta do ANFIS se aproximou muito da resposta real. Devido à deficiência do controle regulatório, no entanto, para as situações em que o sistema neuro-fuzzy não apresenta uma resposta tão próxima da real, ela acompanha a forma da saída esperada.

Trabalhos futuros deveram investigar uma forma de suprir essa deficiência através do próprio mecanismo de inferência.

AGRADECIMENTOS

CNPq e a Petrobras pelo apoio financeiro.

REFERENCIAS BIBLIOGRAFICAS

- [1] Revista Controle &Instrumentação Edição nº 70 Junho de 2002.
- [2] Francisco Guerra, José Soares Lopes, Luiz Affonso Guedes, et all. Implementação de Controladores PID Utilizando Lógica Fuzzy e Instrumentação Industrial. VII Simpósio Brasileiro de Automação Inteligente -SBAI, São Luís - MA, 19-23 de Setembro de 2005.
- [3] M. Y. Chen and D. A. Linkens. A systematic neurofuzzy moeling framework with application to material property prediction, IEEE Trans. Syst. Man. Cybern., Fuzzy Syst., vol. 31, pp. 781-790, Oct. 2001.
- [4] L. Zadeh, "Outline of a new approach to the analysis of complex synthesis with a fuzzy logic controller," *Int. J. ManMach. Suta.*, vol. 7, no. 1, pp. 1–13, 1975.

- [5] E. H. Mamdani, "Application of fuzzy logic to approximate reasoning using linguistic synthesis," *IEEE Trans. Computers*, vol. C-26, pp. 1182–1191, Dec. 1977.
- [6] M. Sugeno, Ed., Industrial Applications of Fuzzy Control. Amsterdam, The Netherlands: North Holland, 1985.
- [7] Identification and control of dynamical system using neural networks. *IEEE Transactions on Neural Networks*, Vol. 1, No. 1, pp. 4-27.
- [8] Maitelli, A.L. & V.S. Cruz., Controladores Lógicos Programáveis. Universidade Federal do Rio Grande do Norte, Natal-RN, 2003.
- [9] M. Y. Chen and D. A. Linkens, "A systematic neurofuzzy modeling framework with application to material property prediction," IEEE Trans. Fuzzy Syst., vol. 31, pp. 781–790, Oct. 2001.
- [10] C. C. Chuang, S. F. Su, and S. S. Chen, "Robust TSK fuzzy modeling for function approximation with outliers," IEEE Trans. Fuzzy Syst., vol.9, pp. 810–821, Dec. 2001.
- [11] A. L. Corcoran and S. Sen, "Using real-valued genetic algorithms to evolve rule sets for classification," Proc. 1st IEEE Conf. EvolutionaryComputation, pp. 120–124, June 1994.
- [12] E. Czogala and J. Leski, Fuzzy and Neuro-Fuzzy Intelligent Systems. Heidelberg, Germany: Physica-Verlag, 2000.Dec. 1991.
- [13] C. T. Lin and Y. C. Lu, "A neural fuzzy systems with linguistic teaching signals," IEEE Trans. Fuzzy Syst., vol. 3, pp. 169–189, May 1995.
- [14] Y. Lin and G. A. Cunningham III, "A new approach to fuzzy-neural system modeling," IEEE Trans. Fuzzy Syst., vol. 3, pp. 190–198, May 1995.
- [15] Manual Coupled Water Tank Experiments, Quanser Inovation Educate.
- [16] J. M. Mendel, "Fuzzy logic systems for engineering: a tutorial," Proc. IEEE, vol. 83, no. 3, pp. 345–377, Mar. 1995.
- [17] Shaw, Ian S.; Simões, Marcelo Godoy. Controle e Modelagem Fuzzy. Ed. Edgard Blucher LTDA, 1ª Edição.
- [18] Takagi, T.; Sugeno, M. Fuzzy identification of system and its applications to modeling control. IEEE Trans. Syst. Man. Cybern., v.15, n. 1, p.116-132, 1985.
- [19] Albino, M.;Souza, A. M.; Junior, C. T.; Sistema Inteligente para previsão de carga em transformadores de distribuição de energia: estudo na freqüência fundamental e em freqüências harmônicas. VI SBQEE, Belém, Pará Brasil.
- [20] Jang, J. S. R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man. Cybern. Vol.23, n°.3, pp.665- 685, 1993.
- [21] Jang, J-S. R., "Neuro-fuzzy moeling: Architecture, Analises and Applications", Tesas de Doutorado, University of California, Berkeley, CA, Estados Unidos, 1992.
- [22] Jang, J-S. R., "Input Selection for ANFIS Learning", Proceedings of the IEEE International Conference on Fuzzy Systems, New Orleans, 1996.