
Enhancing Real-Time Communication over COTS Ethernet switches

Ricardo Marau, Luís Almeida, Paulo Pedreiras
DET/IEETA, Universidade de Aveiro, Portugal

{lda,pedreiras,marau}@det.ua.pt

Abstract
Switched Ethernet arose in the last decade as a means to

increase global throughput with parallel switching paths,

segment the network and create isolated collision domains,

thus reducing the non-determinism of the original shared

Ethernet. However, COTS Ethernet switches still suffer from

a few drawbacks that affect negatively their real-time

communication capabilities. For example, there can be

overflows in ports queues with consequences across ports,

priority levels and virtual LANs, and the number of priorities

is too short for any kind of priority-based scheduling.

Moreover, switches present extra latencies and jitter due to

the need to interpret frame addresses and also due to

different internal architectural solutions. In this paper we

propose using the Flexible Time-Triggered communication

paradigm to enhance the temporal behavior of Ethernet

switches with respect to periodic streams. We explain the

system architecture and we present a formulation of the

global periodic traffic scheduling problem handled by the

FTT master. Simulation and experimental results show the

advantages of using such synchronized framework.

1. Introduction

Since the early 90s that the interest in switched Ethernet

has been growing steadily, being a means to improve global

throughput, implement traffic isolation and reduce the impact

of the non-deterministic CSMA/CD arbitration of original

Ethernet. Switches, unlike hubs, provide a private collision

domain for each of its ports, since they are not directly

connected to each other. When a message arrives at a switch

port, it is buffered, analyzed concerning its destination, and

moved to the buffer of the destination port. If that port is

busy, the message is queued in memory and transmitted later

(Figure 1). Switches may use several queues associated with

different priority levels (IEEE 802.1D). The number of

distinct priority levels is limited to 8, but many current

switches that support traffic prioritization offer an even

further limited number. The scheduling policy used to handle

the messages queued at each port also has a strong impact on

the network timing behavior [4].

Currently, most switches are fast enough handling

message arrivals so that queues do not build up at the input

ports. However, queues may always build up at the output

ports whenever several messages arrive in a short interval

and are forwarded to the same destination port. This situation

This work was partially supported by the European Commission (NoE

ARTIST2, IST-2-004527) and by Universidade de Aveiro, Portugal.

may lead to overloads in which the output queues use up all

the available memory, causing further messages to be

discarded. Despite not frequent, this situation may easily

occur in communication protocols relying on multicast and/or

broadcast data dissemination, such as those based on the

producer-consumer model (e.g., Ethernet/IP-Industrial

Protocol [2]) or on the publisher-subscriber model (e.g.

RTPS [8]). Consequently, the use of switches, only by itself,

is not enough to guarantee real-time behavior [7].

Moreover, switches add an extra latency when compared

to hubs because of the need to process the frame addresses.

Furthermore, this latency is variable, mainly due to internal

architectural aspects, with significant variations among

different manufacturers and models.

Packet

handling

 - Address lookup

 - Traffic classification

Scheduler

In
p

u
t

p
o

rt
s O

u
tp

u
t p

o
rts

Scheduler

Receiving buffers Output Queues

Switch

Figure 1: Typical switch internal architecture.

Nevertheless, switches do alleviate the impact of the non-

determinism inherent to Ethernet’s CSMA/CD medium

access control (MAC) and open the way to efficient

implementations of real-time communication over Ethernet.

In this paper we propose using the Flexible Time-Triggered

communication paradigm to enforce global coordination

among periodic streams, thus controlling the load submitted

to the switch at each instant and avoiding the potential queue

overflow problems. The same paradigm has already been

used over shared Ethernet to overcome the non-determinism

of its MAC leading to the so called FTT-Ethernet protocol

[6]. Herein we propose an adaptation of that protocol to

micro-segmented networks, i.e., based on switches and with

only one station connected to each port, which we will call

FTT-SE. As common to all FTT implementations, the

advantages of this protocol are the global traffic coordination

in a common timeline, the possibility for fast and atomic on-

line updates to the set of streams, the possibility to support

wide ranges of streams periods and the possibility to enforce

any traffic scheduling policy.

1-4244-0379-0/06/$20.00 ©2006 IEEE. 293

In the next section we review the existing approaches to

provide real-time communication over switched Ethernet,

while in section 3 we address the enhancements that we

propose for COTS-based switched Ethernet systems. Therein

we briefly present the previous FTT-Ethernet protocol as

well as the new FTT-SE, which is fine-tuned to exploit the

benefits of micro-segmented Ethernet networks. Section 4

presents the scheduling model beneath the FTT-SE

synchronous communication and provides a condition that

allows building EC-schedules on-line that respect the cyclic

structure of the protocol while bounding the respective

memory requirements. Section 5 presents simulation and

experimental results that show the effectiveness of the

protocol and Section 6 concludes the paper.

2. Real time with Switched Ethernet

This section briefly reviews some of the most relevant

techniques to enforce a real-time behavior on switched

Ethernet. A deeper discussion can be found in [14].

One approach consists in enhancing the switch with

traffic control and scheduling capabilities. E.g. Hoang et al

[3] propose the inclusion of EDF traffic scheduling and on-

line admission control inside a switch. The EtheReal protocol

[9] presents a similar architecture, also based on a modified

Ethernet switch.. PROFINET Isochronous Real Time (IRT),

a new PROFINET real-time profile [12], employs a

distributed cyclic time-slotting scheme encompassing a

deterministic time-triggered phase and an asynchronous

phase for non-real-time traffic. Another class of techniques

consists in using a traffic shaper in each node to limit the

burstiness and amount of the load submitted to the network

and prevent memory overflows, e.g. as proposed in [10].

Master/slave techniques may also be used to achieve real-

time behavior, since in these architectures the master initiates

every transactions and thus has complete control of the load

submitted to the network. For example, the EtherCAT

protocol [12] uses this technique together with specialized

switches and an open-ring topology. Another example is the

ETHERNET Powerlink protocol (EPL) [1], where a master

node explicitly triggers each transaction according to a table

schedule.

Finally, standard switched Ethernet infrastructures,

relying on plain COTS switches, network interface cards

(NIC) and IP stacks, can also be used, e.g., as in Ethernet/IP

[2]. Avoiding overloads and achieving timely behavior in this

case requires a careful analysis by the system designer since

there are no run-time mechanisms to enforce it. The PEAC

protocol [13] is also based on COTS hardware but uses

adapted network drivers implementing a cyclic framework,

synchronized by a time master, with a TDMA phase for

periodic real-time traffic, and an asynchronous phase for non-

real-time sporadic traffic, typically IP. This last approach

presents a few similarities with the one proposed in this paper

but with the TDMA periodic schedule replaced by on-line

scheduling.

3. FTT-SE: an enhancement of FTT-Ethernet

As seen in the previous section, there are several ways to

achieve real-time communication over switched Ethernet.

However, some of them are based on non-standard hardware,

a solution that conflicts with some of the key arguments

supporting the use of Ethernet in real-time applications (cost,

availability, compatibility with general purpose LANs).

Therefore, we focus on COTS-based solutions, only, but still

aiming at a high level of traffic control towards more

predictable timing behavior. Particularly, we propose

adapting FTT-Ethernet, originally developed to operate over

shared Ethernet, which allows tighter traffic control than

existing solutions based on COTS switches, e.g. Ethernet/IP

or traffic shaping. The use of the FTT architecture brings

other important benefits such as the support for arbitrary

traffic scheduling policies, priority levels beyond the eight

levels specified in IEEE 802.1D, offsets among streams

reducing latency and jitter, on-line admission control and

bandwidth management and, finally, avoiding memory

overflows inside the switch.

On the other hand, FTT-Ethernet is still a master/slave

protocols and, as such, introduces an additional overhead

caused by master polls. However, the FTT architecture

employs an improved technique, called master/multi-slave,

according to which the master addresses several slaves with a

single poll, considerably alleviating the protocol overhead.

3.1 Brief review of FTT-Ethernet

FTT protocols organize the communication in fixed

duration slots called Elementary Cycles (ECs), with one

master message per cycle called Trigger Message (TM),

which contains the periodic schedule for that EC. The

periodic messages, called synchronous, are synchronized

with the periodic traffic scheduler. The protocol also supports

aperiodic traffic, called asynchronous, which is managed in

the background, in the time left within the EC, after the

periodic traffic (Fig 2).

Figure 2. The EC structure in the original FTT-Ethernet.

The traffic scheduling activity is carried out on-line and

centrally in the master and the periodic traffic schedules are

disseminated by means of the TM. Since the traffic

scheduling is local to one node, it is easy to enforce any kind

of scheduling policy, as well as perform atomic changes in

the communication requirements. This last feature allows for

on-line stream admission and removal under guaranteed

timeliness as well as on-line bandwidth management.

Similarly to the freedom in the traffic scheduling policy, the

TM TM

Elementary Cycle (EC) [i]

Async.

Window
Synchronous Window

CM3 NRTM4SM1 SM3 SM8 SM9

{SM1,Tx
1
}

{SM3,Tx
3
}

{SM8,Tx
8
}

{SM9,Tx
9
}

NRT11

Elementary Cycle (EC) [i + 1]

CM7 NRT21SM1 SM4 SM11

{SM1,Tx
1
}

{SM4,Tx
4
}

{SM11,Tx
11

}

294

specific bandwidth management scheme can also be any.

These features are the kernel of the FTT paradigm and are

the justification for the flexible attribute.

3.2. FTT-SE for micro-segmented networks

Although it is possible to seamlessly deploy FTT-Ethernet

over hub or switch-based Ethernet networks, important

efficiency gains may be achieved by tailoring the FTT-

Ethernet protocol to take advantage of the distinctive features

of micro-segmented switch-based topologies, namely the

absence of collisions and the existence of parallel

transmission paths.

The inherent absence of collisions that results from the

existence of private collision domains for each port leads to a

noteworthy simplification of the protocol implementation in

the slave nodes, which no longer needs to enforce collision-

free medium access. Messages are transmitted immediately

after decoding the TM, with the switch taking care of the

serialization. Consequently the content of the TM itself is

also simplified, since the specification of the transmission

instants is no longer needed.

On the other hand it becomes possible to take full

advantage of multiple transmission paths by abandoning the

pure broadcast architecture of FTT-Ethernet as long as we

provide the FTT master with information about the nature of

the data exchanges regarding the type of addressing (unicast,

multicast and broadcast) and which end nodes are involved.

With this information the master can compute which

messages follow disjoint paths (i.e., non overlapping source

and destination nodes) and thus build schedules that exploit

this parallelism, increasing the aggregated throughput.

This new feature corresponds to moving from the

broadcast-based producer/consumer cooperation model in

FTT-Ethernet to a publisher/subscriber scheme in FTT-SE.

The master keeps a data structure with the currently existing

groups of publisher/subscribers, with the identification of the

respective streams and the associated physical addresses and

ports. Specific calls issued by the publishers and subscribers

allow creating groups and binding nodes to groups. Two

different cases must be considered according to the type of

switches uses. For non-multicast switches only unicast and

broadcast streams can be considered. For true multicast

switches the standard Internet Group Multicast Protocol

(IGMP, RFC 2236) is used to setup up multicast groups. The

binding process for subscribers uses IGMP(Internet Group

Management Protocol) messages sent explicitly to the FTT

master, which are also snooped by the switch, allowing both

the master and the switch to build coherent forwarding tables.

The master must be correctly configured to the type of switch

being used.

Figure 3 shows the communication system architecture,

with the FTT master attached to one switch port and

scheduling the transmission of the remaining stations.

3.3. Handling aperiodic transmissions in FTT-SE

Unconstrained aperiodic communication may generate

bursts that fill in output queues, leading to long priority

inversions in typical FIFO queues and possibly to queues

overflow and consequent packet losses. One way to improve

this situation is constraining the transmission of aperiodic

traffic in the nodes using traffic shaping or smoothing. This

way, transmission instants are not constrained but the amount

of traffic generated within any interval is bounded.

Alternatively, a more robust and timely but less efficient

mechanism is the one used originally in FTT-Ethernet, based

on polling. In this case, the transmission instants are

adequately planned by the global scheduler but

synchronization delays will increase the response times.

However, there is yet a more efficient approach that can

be obtained without over constraining the transmission

instants of aperiodic traffic, i.e., using switches with two

priority levels. In this case, the lower priority level can be

assigned to the aperiodic traffic that may be transmitted

without being polled, substantially reducing its response

time. Nevertheless, even in this case there can be priority

inversions in the output ports caused by the non-preemptive

nature of packet transmission, but these are bounded to one

packet. Moreover, adequate mechanisms are still required to

constrain the burstiness of the asynchronous traffic to prevent

buffer overflows and consequent interference with the high

priority periodic traffic [7][10].

FTT-SE can use any of the mechanisms above, depending

on the requirements of each application. The polling

approach is more adequate for situations requiring precise

timeliness. When the non-preemption blocking is tolerable,

the dual-priority approach seems better suited. The

asynchronous communication mechanisms within FTT-SE,

however, are outside the scope of this paper and will not be

further addressed.

Figure 3. FTT-SE system architecture.

4. The periodic scheduling model in FTT-SE

The scheduling carried out by the FTT master may take

into account individual priorities of each message, possibly

dynamic priorities, e.g., for EDF scheduling, which are

neither restricted nor correlated to the eight priority levels

defined in 802.1D. This way, FTT-SE supports strict priority

FTT master

TM

Trigger message

Ethernet switch

295

scheduling within each of the priority levels defined in the

standard, thus also including single priority switches (one

priority level). The term strict, though, can only be applied at

a coarse time scale, with a resolution of ECs, since priority

inversions within the EC can occur.

4.1. The traffic scheduling model

Concerning the scheduling model, there are N periodic

streams (SMi) which are stored in a structure called SRT as

shown in (1).

STR = {SMi: SMi(Ci,Di,Ti,Oi,Si,{R1
i..R

ki
i}), i=1..N} (1)

Ci is the transmission time of each instance, Di is the

stream deadline, Ti is the stream period and Oi the offset.

Both Di, Ti and Oi are expressed as integer numbers of ECs.

Then, Si is the sender node and {R1
i..R

ki
i} is the set of ki

receivers for this stream. The calculation of Ci deserves a

special note because the protocol automatically fragments

large messages in a sequence of packets that are scheduled

sequentially by the master. This is particularly useful to

transmit regularly large amounts of data such as video

frames. The fragmentation threshold is defined per stream.

The set in the SRT is scheduled by the FTT master

according to any on-line policy, implementing a single queue

of ready periodic streams. This queue is used to build the EC-

schedule that will be encoded in the TM and broadcast

through the switch. The TM will cause all nodes that are

senders in this EC to feed the scheduled streams to the switch

through a set of M upload links l
u

j. Streams sent by each node

are queued locally until they are transmitted. When these

streams arrive at the switch they are conveyed, with latency ε,

to the output ports and queued for transmission in the M

download links l
d

j (Fig. 4).

The transmission of each packet is non-preemptive, as

usual, but the transmission of long messages, i.e., those with

multiple packets per instance, can be preempted between

packets.

Figure 4. The scheduling model with FTT-SE.

The scheduling problem is two-fold. In one hand, it is

necessary to build the EC-schedules so that the transmission

of the periodic messages fits within the synchronous window

of that EC. On the other hand, it is important to determine

schedulability bounds adequate for each scheduling policy in

this scheduling model. In this paper we address the former

problem, only. The second problem bears some resemblances

with multiprocessor scheduling and is part of on-going work.

4.1. Building EC-schedules

Herein we address the mechanisms for constructing the

EC-schedules considering the multiple queues associated to

the M upload and download links.

The first aspect that must be noted is that, since most

current switches are full duplex, transmissions in download

links overlap with those in the uplinks but shifted an amount

of time corresponding to the switch latency ε. The second

aspect is that the initial constraint of limiting the

communication activity to the synchronous window, whose

maximum duration is LSW, means that no link can be used

more than LSW–ε (Fig. 5). tr is the turnaround time, i.e., the

time needed by the stations to decode the TM and start their

own synchronous transmissions.

Figure 5. Constraining the synchronous traffic to the

synchronous window.

A third aspect is that the transmissions in the downlinks

are causal with respect to those in the uplinks and thus must

always occur after them, at least an amount of time ε. This

means that, if a set of packets arrive close to the end of the

synchronous window at a given queue, their transmission

might extend beyond the end of that window, even if the total

load in that downlink is lower than LSW. Therefore, when

constraining the traffic in the downlinks to LSW it is

necessary not only to account for the traffic duration but also

for the respective transmission instants.

Therefore, given these aspects, we can use one bin

associated to each link during the EC-schedule construction,

where the transmission times of the respective streams are

accumulated. Then, for the uplinks, considering that the

respective transmissions occur immediately after tr and in

sequence, it is just necessary to check the load in each bin

against the LSW-ε threshold. In the downlinks, as referred

above, we need to consider the finishing instant of the latest

transmission (f) and check it against the end of the

synchronous window (LSW). To determine such instant, we

need to keep track of the transmission instants of the previous

packets sent in that queue, detect whether there is an overlap

and add the respective transmission time (Fig. 6).

Once any of the limits is overridden, the stream that

caused it is kept in the ready queue and the EC-schedule is

closed and encoded in the TM. The conditions to stop the

EC-schedule construction and advance to the next EC are

given in (2). The one on top concerns the uplinks and the one

below concerns the downlinks.

TM

SRT

A(...)

B(...)

...

sched

FP, EDF, ...

M nodes

ε

Switch with M portsFTT master

l
u

j l
d
j

SMi

Broadcast to

all nodes

Nodes reaction to the TM

in a given EC

TM Sync window

LSW tr time

EC

l
u

j

... LSW-ε...

l
d

j

2*M

bins

296






≤



−≤





∈

∈

∑
LSWf

LSWC

i
lSMj

lSM

i
j

d
ji

u
ji

)(maxmax

max ε

(2)

The memory requirement in any node µ n
j or port µ p

j

during the synchronous window, in bytes, is then upper

bounded by (3), where r stands for the links transmission

rate, considered equal for all links.

maxj=1..M (µ n
j, µ p

j) < (LSW–ε) * r /8 (3)

Figure 6. Causality constraint in the downlinks.

5. Simulation and experimental results

In order to test the efficiency of FTT-SE we conducted

both simulations and experiments on a real platform. The

simulations were made to allow assessing the efficiency in

the use of the aggregated switch throughput, while the

experiments targeted the verification of the implementation

correctness as well as the assessment of the gains, in terms of

jitter control, obtained with FTT-SE when compared to a

common non-controlled use of a switch.

5.1. Simulation results

The traffic scheduling model used in FTT-SE (Sec. 4)

enforces a strict priority order in the scheduling of messages,

even if it leads to the insertion of idle-time in the

synchronous windows of the ECs. This happens whenever the

scheduler moves on to the next EC while there is still

capacity left in some links and the ready queue in not empty,

yet. Such idle-time introduces a degradation of the efficiency

in the use of the switch aggregated throughput.

Therefore, to assess such degradation we carried out

several simulations with randomly generated message sets

using both RM and EDF scheduling. The operational

parameters considered an EC duration of 5ms and a

maximum synchronous windows duration (LSW) of 85% of

the EC, i.e., 4.25ms. The message sets were generated with

uniform distributions according to the following parameters:

period T in [1,4] ECs, deadline equal to period, single packet

messages with transmission time C corresponding to a

payload in [1200, 1450] data bytes, Publisher chosen from

{A, B, C, D, E, F, G, H} and Subscriber chosen from {A, B,

C, D, E, F, G, H, Broadcast}\{Subscriber} and considering

three different cases, no broadcasts, 50% broadcasts and

100% broadcasts. The two first cases allowed verifying the

capability of using parallel forwarding paths. Moreover,

despite the protocol supporting the specification of activation

offsets the simulations considered a synchronous release of

all messages since we were interested in detecting worst case

response times.

The message sets were generated in order to obtain a

given utilization value of the most loaded link. Thus, new

messages were continually appended to the set until one link

reached the predefined maximum load. This generation

method was used because it prevents queue overflows.

Each of the generated sets was simulated using both EDF

and RM scheduling policies. The simulations were carried

out until a deadline was missed or when the macro cycle had

elapsed in which case the set was considered schedulable.

The ratio of schedulable sets for EDF and RM with respect to

the total number of generated sets is shown in Fig. 7. This

ratio is shown as a function of the total load submitted to the

switch, corresponding to the generated sets. In general, as

expected, EDF (bottom) generates more schedulable sets than

RM (top) despite the difference being relatively small (less

than 10% of the schedulability ratio).

Figure 7. Schedulable sets versus the aggregated

submitted load with EDF (bottom) and RM (top).

Also as expected, the switch utilization with broadcast

traffic is rather low since parallel forwarding paths are not

exploited. There can still be a small level of parallelization

between the uplinks and downlinks inherent to full duplex but

it is rather limited. Conversely, without broadcasts the switch

allows for a substantial increment in the utilization of its

aggregated bandwidth. In this case, there were 8 publishers

connected to the switch through 100Mbps ports and

generating traffic further constrained by the synchronous

window with a maximum duration of 85% of the EC. With

these circumstances, the maximum aggregated throughput is

TM

TM

TM

TM

ε

Master

Node A

Node B

Node C

u

d

u

d

u

d

u

d

tr

Synchronous Window

LSW

SM1 SM2 SM3

SM4

SM2

SM6 SM5

SM4 SM3 SM6

timef6

297

680Mbps. The figures show that EDF and RM are capable of

successfully scheduling all generated sets with aggregated

utilizations of 55 and 50% of that absolute maximum and, in

some cases, up to 80% and 73%, respectively. Given that the

operational parameters of the simulations are realistic, these

values show that FTT-SE is capable of efficiently exploiting

the switch aggregated capacity.

The values obtained with 50% broadcasts are intermediate

values that illustrate the penalty that they cause. It is

interesting to observe that the schedulability ratio grows

approximately 50% when moving from the 100% broadcasts

to the 50% broadcasts case but when moving to no

broadcasts, such improvement is near 450%. This indicates

that broadcasts impose a severe penalty on schedulability

even if in low number.

5.2. Experimental results

A prototype implementation of the FTT-SE protocol was

carried out on the RT-Linux real-time operating system over

the Ethernet layer provided by the LNet network stack.

Several practical experiments were carried out to verify the

correctness of the implementation as well as the level of jitter

control. The experimental platform, shown in Fig. 8,

comprises eleven computers interconnected by an Allied

Telesyn model 8024 Ethernet switch, with 24 ports and 2

priority levels. The computers included one Celeron at

2.2GHz, one Pentium III at 550MHz, six Celeron at 735MHz

as well as three SBCs with Pentium MMX at 266MHz. The

network interface cards (NICs) used were Intel 8255 and

3Com 3C905B.

Table 1. Message set used in the FTT-SE experiments.

One of the computers was dedicated to the FTT master,

nine computers were data publishers, publishing one message

each, and the last computer was a subscriber of all those nine

message streams. Only one subscriber is used in this

experimental assessment to maximize the messages

concurrency in a single link, creating a worst case jitter

situation. The message set is detailed in Table 1 and mixes

messages with different activation rates as well as single-

(messages 5 and 7 to 9) and multi-packet (messages 1 to 4

and 6). The total load submitted by this set is approximately

68,6Mbps.

Concerning the operational configuration of FTT-SE, the

EC duration was set to 1ms and the LSW to 85% of the EC,

i.e., 0,85ms. The traffic scheduling was RM.The same

experiments were also carried out with the publishers sending

information at the same rate but without the transmission

control mechanisms provided by FTT-SE. The interarrival

instants of all messages at the subscriber node were recorded

for both of these configurations referred to as with and

without FTT.

FTT-Master Rx1

Publisher 1-9

Figure 8. The experimental platform.

Before presenting the experimental results it is important

to assess the quality of the measuring tool. In this case we

took timestamps directly from the high precision timer (TSC)

of the Pentium processors to measure the regularity of the

reception of the transmitted streams. These timestamps are,

however, influenced by several factors that cause distortions

to the measurements, e.g., OS-related jitter, network device

drivers and packet switching jitter. This is referred to as

infrastructure jitter and it is inherent to the measurement

process. On the other hand, the purpose of the measurements

is to assess the jitter induced by traffic scheduling and to

compare it with and without FTT-SE. We call this one, traffic

scheduling jitter.

Figure 9. The infrastructure jitter.

To measure the infrastructure jitter we carried out a

preliminary experiment with one single but long packet

message (1500B Ethernet payload) sent every EC (1ms) by

one of the slower computers, during 560s. The transmission

ID C

(Bytes)

T(=D)

(ms)

maxJw

(µs)

maxJwo

(µs)

2 1000 1 483 996

7 1000 1 174 984

8 1000 1 170 1003

3 3840 3 92 932

1 3840 4 893 559

4 3840 4 316 446

5 3840 4 1000 521

6 3840 4 137 561

9 1480 8 4132 436

298

was controlled by FTT-SE. In this case there is no traffic

scheduling jitter and thus the jitter observed is only caused by

the infrastructure. Fig. 9 shows this infrastructure jitter which

is lower than 5µs for 99% of the samples, with a single

occasional maximum of 43µs. These values seem very good

taking into account that the whole FTT transmission control

process is included in this experiment.

After having quantified the infrastructure jitter, we carried

out the reception regularity measurements of the streams in

Table 1 during approximately 5min. The maximum measured

jitter is also shown in the same table in columns maxJw and

maxJwo, for the cases of with and without FTT-SE,

respectively. The results are somehow curious. In the latter

case, i.e., in the absence of transmission control, the clocks of

the various publishers are not synchronized and the

respective relative drifts contribute for the jitter. This effect

is clear in the following Figures 10 to 12 that show the

interarrival times of messages 1, 7 and 9, and the respective

spread. On the other hand, the jitter induced by FTT is almost

discrete, caused by interference among the streams in the

FIFO queues in each EC.

Figure 10. Histogram of interarrival times for message 7.

Figure 11. Histogram of interarrival times for message 1.

Moreover, without FTT there are larger bursts of

submitted load that seems to be the cause for the higher jitter

measured in the faster variables (Table 1). Conversely, with

FTT, the submitted load is always within the capacity of the

synchronous window of each EC and thus the jitter tends to

be smaller for faster variables. Nevertheless, the switch FIFO

queues preclude any jitter control within the synchronous

window. This is because most of the traffic is submitted at

the same time and it becomes extremely difficult to predict

the enqueuing order. In some special cases, for example with

multi-packet messages 3 and 6, the jitter value is especially

low because it refers to the last packet, which is sent later in

the EC. This causes that packet to be enqueued after all

others and thus in a relatively constant position in the FIFO

queue. Message 9 deserves a special note because, as

expected, its priority is the lowest with RM and the jitter is

very high, corresponding to several ECs.

Figure 12. Histogram of interarrival times for message 9.

Finally, the transmission control enforced by FTT-SE may

also be beneficial under highly bursty loads. Without the

transmission control the level of contention at the receivers

might be too high for many network device drivers, which

simply crash. The transmission control of FTT-SE prevents

this abnormal situation by maintaining the submitted load

under manageable levels per EC, obviously at the expense of

enlarging the processing time for the same load.

Nevertheless, this is sufficient to avoid such crashes and keep

the system running. This phenomenon has been observed

several times during the practical experiments.

6. Conclusion

The advent of switched Ethernet has opened new

perspectives for real-time communication over Ethernet.

However, a few problems subsist related with queue

management policies, queue overflows and limited priority

support. Meanwhile, several techniques were proposed to

overcome such difficulties but they require specific hardware,

are inflexible with respect to communication parameters or

do not enforce timeliness guarantees. Therefore, in this paper

we propose using the FTT paradigm to achieve flexible

communication with high level of control to guarantee

299

timeliness and provide adequate queues management in

micro-segmented Ethernet networks. This resulted in the

FTT-SE protocol. We briefly explained its mechanisms and

provided a result that allows building EC-schedules that

respect the duration of the synchronous window. Finally,

several simulation and experimental results were obtained

that exhibit the efficiency of the proposed approach in terms

of using the aggregated switch throughput.

References

[1] ETHERNET Powerlink protocol, available at

http://www.ethernet-powerlink.org

[2] Ethernet/IP (Industrial Protocol) specification, available at

http://www.odva.org

[3] Hoang, H. Jonsson, M., Hagstrom, U., Kallerdahl, A.

"Switched Real-Time Ethernet with Earliest Deadline First

Scheduling - Protocols and Traffic Handling". Proc of WPDRTS

2002, the 10th Intl. Workshop on Parallel and Distributed Real-

Time Systems. Fort Lauderdale, Florida, USA. April 2002.

[4] Jasperneit, J., P. Neumann. “Switched Ethernet for Factory

Communication”. Proceedings of ETFA2001 – 8th IEEE

International Conference on Emerging Technologies and Factory

Automation. Antibes, France. October 2001.

[5] Moldovansky, A., Utilization of Modern Switching

Technology in Ethernet/IP Networks, Proc. of the 1st Int. Workshop

on Real-Time LANs in the Internet Age, RTLIA’02, Vienna,

Austria. Published by Edições Politema, Porto, Portugal, 2002.

[6] Pedreiras, P., Gai, P., Almeida, L., Buttazzo, G. “FTT-

Ethernet: a Flexible Real-Time Communication Protocol that

Supports Dynamic QoS Management on Ethernet-Based Systems”.

IEEE Trans. on Industrial Informatics. Vol. 1, N. 3, August 2005.

[7] Pedreiras, P., R. Leite, L. Almeida. Characterizing the Real-

Time Behavior of Prioritized Switched-Ethernet. RTLIA’03, 2nd

Workshop on Real-Time LANs in the Internet Age, (satellite of

ECRTS’03), Porto, Portugal, July 2003.

[8] RTPS (Real-Time Publisher/Subscriber protocol) part of the

IDA (Interface for Distributed Automation) specification, available

at http://www.ida-group.org

[9] Varadarajan, S., Chiueh, T. “EtheReal: A Host-Transparent

Real-Time Fast Ethernet Switch”. Proc of the 6th Int Conference on

Network Protocols, pp. 12-21. Austin, USA. Oct 1998.

[10] Loeser, J., H. Haertig. “Using Switched Ethernet for Hard

Real-Time Communication”. Proc Parallel Computing in Electrical

Engineering, International Conference on (PARELEC'04), pp. 349-

353, September 07 - 10, 2004, Dresden, Germany.

[11] EtherCAT Technology Group. http://www.ethercat.org/

[12] Real-Time PROFINET IRT. http://us.profibus.com/profinet/07

[13] Bonaccorsi, A. L. Lo Bello, O. Mirabella, A. Pöschmann, P.

Neumann. A Distributed Approach to Achieve Predictable Ethernet

Access Control in Industrial Environments. 5th IFAC International

Conference on Fieldbus Systems and their Applications. July 7-8

2003. Aveiro, Portugal.

[14] P. Pedreiras, L. Almeida. Approaches to Enforce Real-Time

Behavior in Ethernet. in The Industrial Communication Systems

Handbook, R. Zurawski (ed). CRC Press, ISBN:0-8493-3077-7,

2005.

300

