
Scheduling Algorithms and Operating Systems
Support for Real-Time Systems
KRITHI RAMAMRITHAM, MEMBER, IEEE, AND JOHN A. STANKOVIC, FELLOW, IEEE

Invited Paper

This paper summarizes the state of the real-time field in the areas
of scheduling and operating system kernels. Given the vast amount
of work that has been done by both the operations research and
computer science communities in the scheduling area, we discuss
four paradigms underlying the scheduling approaches and present
several exemplars of each. The four paradigms are: static table-
driven scheduling, static priority preemptive scheduling, dynamic
planning-based scheduling, and dynamic best efSort scheduling. In
the operating system context, we argue that most of the proprietary
commercial kernels as well as real-time extensions to time-sharing
operating system kernels do not fit the needs of predictable real-
time systems. We discuss several research kernels that are currently
being built to explicitly meet the needs of real-time applications.

I. INTRODUCTION
Real-time systems are defined as those systems in which

the correctness of the system depends not only on the
logical result of computation, but also on the time at which
the results are produced. Examples of this type of real-time
system are command and control systems, process control
systems, flight control systems, the Space Shuttle avionics
system, future systems such as the space station, space-
based defense systems such as SDI, and large command
and control systems. A majority of today’s systems assume
that much of this knowledge is available a priori , and hence
are based on static designs which contribute to their high
cost and inflexibility. The next generation hard real-time
systems must be designed to be dynamic, predictable, and
flexible.

When activities have timing constraints, as is typical of
real-time computing systems, scheduling these activities
to meet their timing constraints is one major problem
that comes to mind. However, as we show in Section
I1 of this paper, in spite of an extensive literature on

Manuscript received July 13, 1993.This material is. based upon work
supported by the National Science Foundation under Grants CDA-8922572
and IRI-9208920, and by the Office of Naval Research under Grant
N00014-92-J- 1048.

The authors are with the Department of Computer Science, University
of Massachusetts, Amherst, MA 01003.

IEEE Log Number 9214154.

scheduling, scheduling algorithms that are of practical
value for real-time computing, ones that take real-world
considerations into account, have only begun to appear.
Given the vast amount of work that has been done by both
the operations research and computer science communities
in the scheduling area, it is impossible to do an exhaustive
survey of the field. Instead, we discuss four paradigms
underlying the scheduling approaches and discuss several
exemplars of each. The four paradigms are: static table-
driven scheduling, static priority preemptive scheduling,
dynamic planning-based scheduling, and dynamic best ef-
fort scheduling. Because of their increasing importance
we also discuss the impact of quality-timeliness trade-
offs, fault-tolerance constraints, and resource reclaiming on
scheduling.

Clearly, a real-time operating system must be able to
perform integrated CPU scheduling and resource allocation
so that collections of cooperating tasks can obtain the re-
sources they need, at the right time, in order to meet timing
constraints. In addition to proper scheduling algorithms,
predictability requires bounded operating system primitives.
Using the current operating system paradigm of allowing
arbitrary waits for resources or events, or treating a task
as a random process will not be feasible in the future
to meet the more complicated set of requirements. It is
also important to avoid having to rewrite the operating
system for each application area. In Section 111 we elaborate
on these issues and discuss operating systems under three
broad categories: proprietary commercial kernels, real-time
extensions to time-sharing operating system kernels, and
research kernels.

11. REAL-TIME SCHEDULING
Scheduling involves the allocation of resources and time

to tasks in such a way that certain performance requirements
are met. Scheduling has been perhaps the most widely
researched topic within real-time systems. This is due to
the belief that the basic problem in real-time systems

00 18-92 19/94$04.00 0 1994 IEEE

PROCEEDINGS OF THE IEEE, VOL. 82. NO. I , JANUARY 1994 5.5

is to make sure that tasks meet their time constraints.
Scheduling is also a well-structured and conceptually de-
manding problem. Given the resulting enormous amount
of literature available on scheduling, any survey paper can
only scratch the surface. On the other hand, just giving a
list of algorithms is not useful. Hence, we have categorized
the state of the art into a set of paradigmatic approaches to
scheduling and present instances of the algorithms that fit
the different paradigms.

This section is structured as follows. Since a scheduling
algorithm is typically geared to meet a certain performance
requirement, we first discuss, in Section 11-A, the different
metrics that have been used in real-time systems, Based
on these metrics and also on whether an algorithm is used
on-line or off-line, different approaches or paradigms for
scheduling have been used in the literature. Four main
paradigms are introduced in Section 11-B. Section 11-C
discusses different examples of scheduling algorithms that
conform to these four paradigms. In Section 11-D we discuss
three additional important scheduling topics: scheduling
with quality-timeliness tradeoffs, scheduling with fault-
tolerance constraints, and resource reclaiming.

A. Performance Metrics in Real-Time Systems
The metrics that guide scheduling decisions depend on

the application areas. The need to minimize the schedule
length pervades static non-real-time systems and mini-
mizing response times and increasing the throughput are
the primary metrics in dynamic non-real-time systems.
However, in both static and dynamic real-time systems, the
main goal is to achieve timeliness. This introduces quite
different metrics for the real-time case.

The variety of metrics that have been suggested for real-
time systems is indicative of the different types of real-time
systems that exist in the real world as well as the types of
requirements imposed on them. This sometimes makes it
hard to compare different scheduling algorithms. Another
difficulty arises from the fact that different types of task
characteristics occur in practice. Tasks can be associated
with computation times, resource requirements, importance
levels (sometimes also called priorities or criticalness),
precedence relationships, communication requirements, and
of course, timing constraints. If a task is periodic, its period
becomes important; if it is aperiodic, its deadline becomes
important. A periodic task may have a deadline by which it
must be completed. This deadline may or may not be equal
to the period. Both periodic and aperiodic tasks may have
start time constraints.

Let us consider some of the performance metrics. In the
static case, an off-line schedule is to be found that meets
all deadlines. If many such schedules exist, a secondary
metric, such as maximizing the average earliness is used
to choose one among them. If no such schedule exists, one
which minimizes the average tardiness may be chosen. In
dynamic real-time systems, since, in general, it cannot be a
priori guaranteed that all deadlines will be met, maximizing
the number of arrivals that meet their deadlines is often
used as a metric.

An issue related to metrics is the level of predictability
afforded by a particular scheduling approach. That is, using
a particular approach how well can we predict that the
tasks will meet their deadlines? We will comment on this
as we examine the different scheduling paradigms in the
next subsection.

It should be mentioned that two different research com-
munities have examined scheduling problems from their
own perspectives. Scheduling in the Operations Research
(OR) community has focussed on job-shop and flow-shop
problems, with and without deadlines. For instance, man-
power scheduling, project scheduling, and scheduling of
machines are some of the topics studied in OR. The types
of resources assumed by OR researchers (machines, factory
cells, etc.) and how jobs use those resources (e.g., a job
may be required to use every machine in some specified
order) are quite different from those assumed by Computer
Science researchers (CPU cycles, memory, etc., and where
jobs typically use only a single machine). Also, activities on
a factory floor typically have larger time granularities than
those studied by computer scientists. Some of the metrics
of interest to the OR community are: minimizing maximum
cost, minimizing the sum of completion times, minimizing
schedule length, minimizing tardiness, and minimizing the
number of tardy jobs. Also, OR techniques are geared to-
wards static (off-line) techniques whereas those developed
in computer science focus more on dynamic techniques.
In spite of these differences, the abstract problems studied
by the two communities have a large commonality. In this
paper, however, we examine scheduling problems mainly
from the perspective of computer science. For an OR view
of the problem we refer the reader to [7], [12], [20], [29],
W1.

B. Scheduling Paradigms
As was mentioned in the previous section, predictability

is one of the primary issues in real-time systems. Schedu-
lability analysis or feasibility checking of the tasks of a
real-time system has to be done to predict whether the
tasks will meet their timing constraints. Several scheduling
paradigms emerge, depending on a) whether a system
performs schedulability analysis, b) if it does, whether it
is done statically or dynamically, and c) whether the result
of the analysis itself produces a schedule or plan according
to which tasks are dispatched at run-time. Based on this we
can .

.

identify the following classes of algorithms:
Static table-driven approaches: These perform static
schedulability analysis and the resulting schedule (or
table, as it is usually called) is used at run time to
decide when a task must begin execution.
Static prioritydriven preemptive approaches: These
perform static schedulability analysis but unlike in the
previous approach, no explicit schedule is constructed.
At run time, tasks are executed “highest priority first.”
Dynamic planning-based approaches: Unlike the pre-
vious two approaches, feasibility is checked at run
time, i.e., a dynamically arriving task is accepted for

Sh PROCEEDINGS OF T H E IEEE. VOL. 82, NO. 1, JANUARY 1994

execution only if it found feasible. (Such a task is said
to be guaranteed to meet its time constraints.) One
of the results of the feasibility analysis is a schedule
or plan that is used to decide when a task can begin
execution.
Dynamic best effort approaches: Here no feasibility
checking is done. The system tries to do its best to
meet deadlines. But since no guarantees are provided,
a task may be aborted during its execution.

It must be pointed out that even though we have identified
these four categories for ease of discussion, some sched-
uling techniques possess characteristics that span multiple
paradigms. Now we briefly elaborate on each of these
categories.

Static tahle-dri\>en approaches are applicable to tasks that
are periodic (or have been transformed into periodic tasks
by well-known techniques). Given task characteristics, a
table is constructed, using one of many possible techniques
(e.g., using various search heuristics), that identifies the start
and completion times of each task and tasks are dispatched
according to this table. This is a highly predictable approach
but is highly inflexible since any change to the tasks and
their characteristics may require a complete overhaul of the
table.

The approach traditionally used in non-real-time systems
is the priority-based preemptive scheduling approach. Here,
tasks have priorities that may be statically or dynamically
assigned and at any time, the task with the highest priority
executes. It is the latter requirement that necessitates pre-
emption: if a low-priority task is in execution and a higher
priority task arrives, the former is preempted and the pro-
cessor is given to the new arrival. If priorities are assigned
systematically in such a way that timing constraints can be
taken into account, then the resulting scheduler can also
be used for real-time systems. For example, using the rate-
monotonic approach [36], utilization bounds can be derived
such that if a set of tasks do not exceed the bound, they
can be scheduled without missing any deadlines using such
a static priority-driven preemptive scheduler.

Cyclic scheduling, used in many large-scale dynamic
real-time systems [SI is a combination of both table-driven
scheduling and priority scheduling. Here, tasks are assigned
one of a set of harmonic periods. Within each period, tasks
are dispatched according to a table that just lists the order in
which the tasks execute. It is slightly more flexible than the
table-driven approach because no start times are specified
and it is amenable to U priori bound analysis-if maximum
requirements of tasks in each cycle are known beforehand.
However, pessimistic assumptions are necessary for deter-
mining these requirements. In many actual applications,
rather than making worse case assumptions, confidence
in a cyclic schedule is obtained by very elaborate and
extensive simulations of typical scenarios. This approach
is both error-prone and expensive [40].

The dynumic planning-based approaches provide the
flexibility of dynamic approaches with some of the pre-
dictability of approaches that check for feasibility. Here,
after a task arrives, but before its execution begins, an

attempt is made to create a schedule that contains the
previously guaranteed tasks as well as the new arrival. If the
attempt fails and if the attempt is made sufficiently ahead
of the deadline, time is available to take altemative actions.
This approach provides for predictability with respect to
individual arrivals and for achieving admission control.

In contrast, if a purely priority-driven preemptive ap-
proach is used, say, by using task deadlines as priorities, and
without any planning, a task could be preempted any time
during its execution. In this case, until the deadline arrives,
or until the task finishes, whichever comes first, we do not
know whether a timing constraint will be met. This is the
major disadvantage of the dynamic. best effort approaches.
If, however, we can analyze the worst case performance
characteristics of such a scheduler, then perhaps it can be
recognized and avoided. Such worst case analyses are in
their infancy, being applicable to tasks with very simple
characteristics [4].

C. Scheduling Algorithms for These Paradigms
The variety of performance metrics, scheduling ap-

proaches, and types of processing resources used by tasks
imply a wide variety of scheduling algorithms. Before we
delve into the algorithms, we note that most instances
of the scheduling problem for hard real-time systems are
computationally intractable. Here is a summary of the
results discussed in [17], [18]. The problem of scheduling
tasks with unit computation times and arbitrary precedence
relationships on two processors and one resource is NP-
complete; a polynomial time algorithm exists when the
precedence relation is empty but arbitrary numbers of
resources are present. But, for three processors and one
resource, even with an empty precedence relationship,
the problem is NP-complete. The generalized versions
of the above problem are NP-complete even though for
a limited number of cases polynomial time solutions
exist. In summary, resource-constrained scheduling is an
NP-complete problem, and the presence of precedence
constraints exacerbates the problem. Hence, as we shall see
in the rest of this section, many authors have examined the
use of heuristics and approximation algorithms to deal with
tasks that have complex requirements, including resource
requirements and precedence constraints.

1) Static Table-Driven Scheduling: These approaches are
motivated by the fact that resources needed to meet the
deadlines of safety-critical tasks must be preallocated so
that they can be guaranteed a priori. These tasks are
usually statically scheduled such that their deadlines will
be met even under worst case conditions. For obvious
reasons, these tasks are assumed to be periodic. (If they
are not, assuming worst case interarrival times, they can
be converted into periodic arrivals.) For periodic tasks,
there exists a feasible schedule if and only if there exists a
feasible schedule for the LCM (the least common multiple)
of the periods [30]. Given a set of periodic tasks, a typical
algorithm that deals with multiprocessors or a distributed
system attempts to assign subtasks of the tasks to processors
or sites in the system and to construct a schedule of length

RAMAMRITHAM AND STANKOVIC. ALGORITHMS AND SUPPORT FOR REAL-TIME SYSTEMS SI

LCM of the the task periods. At run time, the set of tasks is
repeatedly executed according to this schedule every LCM
units of time.

If the tasks have simple characteristics, then a table can
be constructed using the earliest-deadline-first (EDF), or
the shortest-period-first technique. However, besides peri-
odicity constraints, tasks may have resource requirements
and can possess precedence, exclusion, communication,
as well as replication constraints. In these cases, given
the NP-completeness of the resulting scheduling problem,
heuristics are resorted to [33]. Most of the algorithms adopt
aspects from the branch-and-bound discipline in searching
for a feasible schedule.

For instance, Xu and Parnas [73] have examined this
scheduling problem for a task model where tasks are di-
vided into subtasks and exclusion and precedence relations
are specified among subtasks. It is applicable to multipro-
cessor systems. If an exclusion relation exists between two
subtasks s1 and s g then S I ’ S execution cannot be interrupted
by s g and vice versa. Exclusion relations can be used
to model resource access conflicts. The algorithm uses a
branch-and-bound technique where an initial schedule that
is based on ordering the tasks according to their deadlines is
modified at each step to reduce the maximum lateness of the
tasks. If a schedule is found with a maximum lateness that is
zero or negative, then the schedule meets all the deadlines.
If a feasible schedule is not found then the algorithm at least
derives a schedule with the smallest maximum lateness.

The algorithm described in [47] considers communication
and replication constraints and is applicable to distributed
systems. It clusters subtasks of tasks based on the amount
of communication involved between a pair of communi-
cating subtasks and the computation time of the subtasks.
Clustered subtasks are assigned to the same site, thereby
eliminating the communication costs involved. A feasible
schedule is determined by using a heuristic search technique
that takes into account the various task characteristics,
in particular, subtask computation times, communication
costs, deadlines, and precedence constraints. Communica-
tion (between subtasks) on the communication channels in
the system is also scheduled. This algorithm is designed for
tasks whose subtasks may have to be executed on different
sites, to cater, for example, to subtasks of a task having
replication requirements. Further, the total computational
requirements of subtasks of a task may be such that a
single site may not be able to execute all of them within the
period of the task. However, by distributing the subtasks,
in particular, by exploiting the parallelism within a task,
it may be possible to meet the periodicity requirements.
Also, all resources needed by all the subtasks may not be
available on any one site. The work described in [43] is
also applicable to tasks with precedence and communication
constraints and is a pure branch-and-bound search. Unlike
in [47], all the subtasks of a task are scheduled to execute
on the same site.

The primary criterion in the static scheduling of pe-
riodic tasks is predictability, i.e., determining a feasible
schedule wherein all tasks meet their timing requirements,

precedence constraints, etc. Under static allocation and
scheduling, exactly when and where instances of a task
will execute are fixed. But, if both periodic tasks as well
as nonperiodic tasks exist in a system, it will be advanta-
geous to make some provision, during static scheduling, to
cater to the needs of dynamic arrivals. For instance, some
leeway could be provided such that the static schedules
can be dynamically modified for better nonperiodic task
schedulability while retaining the feasibility of the critical
task set. A scheme to achieve this is discussed in [51].

2) Priority-Driven Preemptive Scheduling: Priority-
driven preemptive scheduling is the one used in most
time-sharing systems. In non-real-time systems, the priority
of a job changes depending on whether it is CPU-bound
or I/O-bound. In real-time systems, priority assignment is
related to the time constraints associated with a job or task
and this assignment can be either static or dynamic.

Liu and Layland [36] were perhaps the first to formally
study priority-driven algorithms. They focussed on the
problem of scheduling periodic tasks on a single processor
and proposed two preemptive algorithms. The first algo-
rithm, called the Rate-Monotonic (RM) algorithm assigns
static priorities to tasks based on their periods. It assigns
higher priorities to tasks with shorter periods. They showed
that this scheme is optimal among static-priority schemes.
This assignment is intuitively easy to understand. Liu
and Layland also analyzed Earliest-Deadline-First (EDF), a
dynamic priority-assignment algorithm: The closer a task’s
deadline, the higher its priority. This again is an intuitive
priority assignment policy.

Static priorities are attractive because a task’s priority
is assigned once it arrives and does not have to be re-
evaluated as time progresses. The RM priority-assignment
policy is applicable to periodic tasks. A dynamic priority-
assignment policy, however, can be applied to both periodic
and aperiodic tasks. In contrast with static priorities, a task’s
dynamic priority may change when a new task, say with an
earlier deadline, arrives. This makes the use of dynamic
priorities more expensive in terms of run-time overheads.

The advantage of either of these two priority-assignment
policies is that, for periodic tasks, schedulability bounds
on resource utilization by the tasks exist. In the case of
the RM policy, a set of n tasks can be scheduled to meet
its periodicity constraints on a uniprocessor provided the
processor’s utilization is no greater than In2 for large
n. Better bounds based on more exact characterization of
the RM policy can be found in [32]. If the periods are
harmonics of the smallest period, the bound is 1.00. In the
case of EDF, the bound is always 1.00.

In addition to EDF, a task’s laxity (given by the amount
of time one can wait and still meet its deadline) can be used
as its dynamic priority. This leads to the Least-Laxity-First
algorithm. In fact, any function of the task’s parameters can
be used to assign priorities. We will see examples of these
in Section 11-C3.

Even though the RM policy has been in use by NASA in
its software for the Apollo space missions, [36] is the first
publication that gave a formal characterization and analysis

5 8 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1 , JANUARY 1994

of the RM policy. Then, after a long hiatus, it was picked
up again by Sha, Lehoczky, and their colleagues, as well
as Baker, among others, and extended in a variety of ways
to deal with shared resources, aperiodic tasks, tasks with
different importance levels, and mode changes. These are
discussed in detail in [56].

Although feasibility checking or schedulability analysis
is made easier by preemptive scheduling (in terms of the-
oretical optimality and complexity), the checking generally
either ignores the dispatching cost, or assumes it is a
negligibly small constant. However, in an actual system,
dispatching is more complicated involving preemption, con-
text switching, and readying the preempted task for future
resumption. The dispatcher must also incorporate timer
interrupts. The complexity of the dispatching process under
nonpreemptive scheduling depends on whether the tasks
are independent and whether there are resource constraints.
The planning-based scheduling algorithms discussed next
typically use nonpreemptive scheduling, partly motivated
by the goal of reducing unnecessary preemptions.

3) Dynamic Planning-Based Scheduling: Dynamic plan-
ning-based schedulers focus on dynamically performing
feasibility checks. A task is guaranteed by constructing
a plan for task execution whereby all guaranteed tasks
meet their timing constraints. A task is guaranteed subject
to a set of assumptions, for example, about its worst
case execution time and resource needs, and the nature
of faults in the system. If these assumptions hold, once
a task is guaranteed it will meet its timing requirements. A
guarantee algorithm must consider many issues including
worst case execution times, resource requirements, timing
constraints, the presence of periodic tasks, preemptable
tasks, precedence constraints (which is used to handle task
groups), multiple importance levels for tasks, and fault-
tolerance requirements. In a distributed system, when a
task arrives at a site, the scheduler at that site attempts to
guarantee that the task will complete execution before its
deadline, on that site. If the attempt fails, the scheduling
components on individual sites cooperate to determine
which other site in the system has sufficient resource surplus
to guarantee the task.

An algorithm to guarantee nonpreemptable tasks arriving
at a site given their arrival time, deadline or period,
worst case computation time, and resource requirements is
described in [49]. A task uses a resource either in shared
mode or in exclusive mode and holds a requested resource
as long as it executes. Using heuristics, a full feasible
schedule for a set of tasks is constructed in the following
way. Starting at the root of the search tree which is an
empty schedule the algorithm tries to extend the schedule
(with one more task) by moving to one of the vertices
at the next level in the search tree until a full feasible
schedule is derived. To this end, a heuristic function H
which synthesizes various characteristics of tasks affecting
real-time scheduling decisions is used to actively direct the
scheduling to a plausible path. H is applied to at most k
tasks that remain to be scheduled at each level of search.
The task with the smallest value of function H is selected

to extend the current partial schedule. If a partial schedule
is found to be infeasible, it is possible to backtrack and then
continue the search. If the value of IC is constant (and in
practice, IC will be small when compared to the task set size
n), the complexity is linearly proportional to n, the size of
the task set [49]. While the complexity is proportional to n,
the algorithm is programmed so that it incurs a fixed worst
case cost by limiting the number of H function evaluations
permitted in any one invocation of the algorithm. The paper
also discusses how to choose IC.

Dynamic algorithms that do not a priori know the arrival
times of tasks cannot guarantee optimal performance [15].
But one dynamic algorithm can be considered better than
another, if given a number of task sets for which feasible
schedules exists, the former is able to find feasible sched-
ules for more task sets than the latter. Extensive simulation
studies of the algorithm show that a heuristic that combines
deadline and resource requirement information works very
well (see also [74], [75]) according to this performance
criterion. Hence this algorithm has been implemented as
part of the Spring kemel [63]. In [72], another dimension
of the heuristic algorithm, namely, the bound on the length
of the schedule compared to an algorithm that minimizes
schedule length is derived.

With regard to cooperation between processing elements,
several schemes have been reported in the literature [6],
[24], [50]. We now discuss details of the four algorithms
evaluated in [50]. They differ in the way a site treats a
task that cannot be guaranteed locally: In the random-
scheduling algorithm, the task is sent to a randomly selected
site; in the focussed-addressing algorithm, the task is sent to
a site that is estimated to have sufficient surplus resources
and time to complete the task before its deadline; in the
bidding algorithm, the task is sent to a site based on the
bids received for the task from sites in the system; and in
thejexible algorithm, the task is sent to a site based on a
technique that combines bidding and focussed addressing.
These algorithms are compared, via simulations, relative to
each other as well as with respect to two baselines. The first
baseline is the noncooperative algorithm where a task that
cannot be guaranteed locally is not sent to any other site.
The second is an (ideal) algorithm that behaves exactly
like the bidding algorithm, but incurs no communication
overheads. The fact that distributed scheduling improves the
performance of a hard real-time system is attested by the
better performance of the flexible algorithm compared to the
noncooperative baseline under all load distributions. The
performance of the flexible algorithm is better than both the
focussed-addressing and bidding algorithms. However, the
performance difference between the bidding algorithm and
the flexible algorithm under small communication delays
is negligible. The same can be said about the performance
difference between the focussed addressing algorithm and
the flexible algorithm under large communication delays.
The random algorithm performs quite well compared to the
flexible algorithm, especially when system load is low as
well as when system load is high and the load is unevenly
distributed. Under moderate loads, its performance falls

RAMAMRITHAM AND STANKOVIC: ALGORITHMS AND SUPPORT FOR REAL-TIME SYSTEMS - 59

short by a few percentage points which may be significant
in a hard real-time system. Overall, the studies show that
no algorithm outperforms all others in all system states.
Though the flexible algorithm performs better than the rest
in most cases, it is more complex than the other algorithms.
Other details of the distributed scheduling algorithms can be
found in [46], [50], [64]. The stability of these algorithms
is discussed in [59].

4) Dynamic Best Effort Scheduling: Best effort schedul-
ing is the approach used by many real-time systems de-
ployed today. In such systems, a priority value is computed
for each task based on the task’s characteristics and the
system schedules tasks according to their priority. Confi-
dence is gained in the system via extensive simulations, in
conjunction with recoding the tasks and priority adjustment.

Often used real-time scheduling algorithms, such as,
earliest deadline first and least laxity first have optimal
behavior as long as no overloads occur. However, exper-
iments reported in [39] show that extreme performance
degradation is encountered under overloads. But, since dy-
namic algorithms must perform well under varying loading
conditions, the next task to execute or to discard in the
case of an overload must be chosen carefully. The best
effort approach proposed in [39] tries to maximize the
sum of the values of the tasks completed under overload
condition where a task’s value to the system depends on
when it completes execution. Priority-driven preemptive
scheduling is employed. Many different types of value
functions are examined in [39], including shortest process-
ing time first, earliest deadline first, least laxity first, first
come first served, an algorithm that randomly chooses the
next task to execute, as well as one that fixes a task’s
priority to be its highest possible value. In addition to
the standard highest-priority-first scheduling algorithm, an
algorithm which discards tasks with low value density,
i.e., value per unit computation time, when an overload is
considered likely, is also evaluated. As expected, the new
algorithm improves performance under overloads. Dealing
with overheads, in general, is a complex problem and
solutions are still in their infancy [4], [51.

Clearly, the biggest disadvantage of dynamic best effort
algorithms lie in their lack of predictability and their
suboptimality. A dynamic scheduling algorithm is said to be
optimal if it always produces a feasible schedule whenever
a clairvoyant algorithm, i.e., a static scheduling algorithm
with complete prior knowledge of the tasks, can do so. For
most real-world circumstances, optimal dynamic algorithms
do not exist [9], [15], [23], [42]. However, recognizing that
it will be useful to quantify the worst case behavior of the
dynamic algorithms, recently, there has been a surge of
activity in this area. The results of this work can be useful
in handling overloads effectively.

For example, [4] analyzes such bounds for the prob-
lem of preemptively scheduling sporadic task requests in
both uniprocessor and multiprocessor environments. In the
model considered, if a task is successfully scheduled to
completion, a value equal to the task’s execution time is
imparted to the system; otherwise, no value is obtained.

It is proved that no dynamic scheduling algorithm can
guarantee a cumulative value greater than a fourth of the
value obtainable by a clairvoyant algorithm. (In fact, for
the algorithm in [39], this ratio can be as low as zero.)
Furthermore, the paper presents a dynamic scheduling
algorithm TD1 with this behavior, thus showing the bound
to be tight. The paper also quantifies the relationship
between the amount of overloading permitted and the
bound. Generalization of these results to two processors
gives an upper bound of 112 which is tight in some very
special cases. These results are just the beginning and have
to be elaborated to apply to more interesting and useful
situations in order for dynamic best effort approaches to be
employed by real-time systems that must be predictable.

D. Other Important Scheduling Issues
In this section we discuss two issues that are important

in any real real-time system. They are: supporting fault
tolerance, and improving performance by utilizing time
left unused when tasks do not use all the time earmarked
for them. A third issue concerns scheduling imprecise
computations, computations in which a tradeoff between
the solution quality and timeliness can be achieved. Since
a detailed discussion of imprecise computations appears in
[38] we do not discuss it here.
1) Scheduling with Fault-Tolerance Constraints: In this sec-
tion, we examine some of the scheduling algorithms that
explicitly take fault tolerance into account.

In [35], Liestman and Campbell propose a deadline
mechanism that can guarantee that a primary task will make
its deadline if there is no failure, and that an altemative
task (of less precision) will run by the deadline if there is a
failure. If the primary task executes then it is not necessary
to run the altemative task and the time set aside for the
alternative is reused. The paper deals with periodic tasks
only and allows all tasks to be preempted. It is possible
to precompute a tree of schedules (and backup schedules)
where the tree can be encoded within an efficient table-
driven scheduler.

Krishna and Shin continue with this theme in [28].
Specifically, they want to be able to quickly switch to a new
task schedule upon failure, where that new schedule has
been precomputed. Off-line they use a dynamic program-
ming algorithm to compute contingency schedules which
are embedded within the primary schedule. In this approach
they are able to ensure that hard deadlines are met in the
face of some maximum number of failures. The embedded
contingency schedules are not used unless there is a failure.
However, the contingency schedules do represent a latent
demand for processing time, thereby lowering the efficiency
of the primary schedules to some extent. This is the price
paid for having very little on-line processing time available
to respond to failures. This paper also assumes that there is
a need to conserve memory so that at most one contingency
schedule per processor can be stored. In many of today’s
real-time systems memory constraints are still bottlenecks
and therefore need to be accounted for. This paper also
considers periodic tasks, but in contrast with [35] it does not

60 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1, JANUARY 1994

suggest running some restricted and less accurate version
of the task.

Approaches for fault tolerance, such as these two pa-
pers represent, are valuable for static, embedded computer
systems where fault tolerance is extremely important and
deadlines are very tight. In such cases, processor uti-
lization is not important, rather guaranteeing the primary
and contingency schedules are important. However, these
static approaches are not suitable for many next-generation
real-time systems which must provide for predictability
while reacting to the dynamics of the environment. Also,
techniques are required that can trade off fault tolerance
for timeliness, if an application allows such tradeoffs, to
handle overloads. For example, it is possible to combine
the use of dynamic-planning-based schedulers, to provide
predictability, with the notion of imprecise computations,
to effect the tradeoffs. This brings to bear the power of the
two complementary approaches to provide adaptive fault
tolerance by focusing on the specific interaction between
fault tolerance and scheduling. It allows the system to
dynamically adapt the fault-tolerance requirements of pro-
cesses. Planning permits the forecasting of timing errors,
supports graceful degradation, and allows dynamic tradeoff
analysis involving levels of redundancy and value accrued
to the system.

2) Scheduling with Resource Reclaiming: The variance in
tasks' execution times may result in some tasks completing
earlier than expected by the scheduler. The task dispatcher
can try to reclaim the time left by such early completion
and utilize that to execute other tasks. Clearly, non-real-time
tasks can be executed in the idle time slots. But, more valu-
able will be an approach that improves the guaranteeability
of tasks that have time constraints. Several issues must be
considered to achieve this. When the actual computation
time of a task differs from its worst case computation time
in a nonpreemptive multiprocessor schedule with resource
constraints, run-time anomalies [191 may occur. These
anomalies may cause some of the scheduled tasks to miss
their deadlines. In particular, one cannot simply use any
greedy or work-conserving dispatcher, one that will never
leave a processor idle if there is a dispatchable task. For
tasks with precedence constraints, Manacher [4 11 proposed
an algorithm to avoid these anomalies by imposing addi-
tional precedence constraints on tasks to preserve the order
of tasks which can run in parallel. Manacher's work was
motivated by a need to make sure that the processors that
execute task replicas (for fault tolerance) follow a consistent
schedule even when tasks finish early. This is termed the
stabilization problem.

Reclaiming unused time to improve the schedulability
of dynamically arriving tasks is the motivation behind
the work in [57]. Resource reclaiming algorithms used in
systems that do dynamic planning-based scheduling must
be correct, i.e., must maintain the feasibility of guaranteed
tasks; must be inexpensive, i.e., the overhead cost of a
resource reclaiming algorithm should be very low compared
to tasks' computation times since a resource reclaiming
algorithm is invoked whenever a task finishes; must have

bounded complexity, in particular, it should be independent
of the number of tasks in the schedule, so that its cost can
be incorporated into the worst case computation time of
a task; and must be effective, i.e, it should improve the
performance of the system.

In [57] two resource reclaiming algorithms, are presented:
Basic Reclaiming and Reclaiming with Early Start. These
two algorithms employ strategies that are a form of dynamic
local optimization of a feasible multiprocessor schedule.
Both of these algorithms have bounded time complexity
although Reclaiming with Early Start is more expensive to
run than Basic Reclaiming. Simulation results demonstrate
that these simple local optimizations can be very effective
in improving the system performance in a dynamic real-
time system and that resource reclaiming can compensate
for the performance loss due to the worst case assumptions
about the computation times of real-time tasks.

111. REAL-TIME OPERATING SYSTEMS
Real-time operating systems are an integral part of real-

time systems. Not surprisingly, four main functional areas
that they support are process management and synchroniza-
tion, memory management, interprocess communication,
and I/O. However, the manner in which they support
these areas differs from conventional operating systems as
will be discussed in this section. In particular, real-time
operating systems stress predictability and include features
to support real-time constraints. Three general categories of
real-time operating systems exist: small, proprietary kernels
(commercially available as well as homegrown kernels),
real-time extensions to commercial timesharing operating
systems such as UNIX, and research kernels. In this section
we will survey these three main categories of real-time
operating systems.

A . Small, Fast, Proprietary Kernels
The small, fast, proprietary kernels come in two varieties:

homegrown' and commercial offerings'. Both varieties are
often used for small embedded systems when very fast
and highly predictable execution must be guaranteed. The
homegrown kernels are usually highly specialized to the ap-
plication. The cost of uniquely developing and maintaining
a homegrown kernel, as well as the increasing quality of the
commercial offerings is significantly reducing the practice
of generating homegrown kernels. For both varieties of
proprietary kernels, to achieve speed and predictability,
the kernels are stripped down and optimized versions of
time-sharing operating systems. To reduce the run-time
overheads incurred by the kernel and to make the system
fast, the kernel

has a fast context switch,
has a small size (with its associated minimal function-
ality),

'Examples include [l] , [22].
' Examples of commercials kernels include QNX, PDOS, pSOS, VCOS,

VRTX32, and VxWorks.

RAMAMRITHAM AND STANKOVIC: ALGORITHMS AND SUPPORT FOR REAL-TIME SYSTEMS 61

responds to extemal interrupts quickly (sometimes
with a guaranteed maximum latency to post an event
but, generally, no guarantee is given as to when
processing of the event will be completed; this later
guarantee can sometimes be computed if priorities are
chosen correctly),
minimizes intervals during which interrupts are dis-
abled,
provides fixed or variable sized partitions for memory
management (i.e., no virtual memory) as well as the
ability to lock code and data in memory, and
provides special sequential files that can accumulate
data at a fast rate.

To deal with timing requirements, the kernel
provides bounded execution time for most primitives,
maintains a real-time clock,
provides a priority scheduling mechanism,
provides for special alarms and timeouts,
supports real-time queuing disciplines such as earliest
deadline first and primitives for jamming a message
into the front of a queue, and
provides primitives to delay processing by a fixed
amount of time and to suspend/resume execution.

In general, the kemels also perform multitasking and
intertask communication and synchronization via standard,
well-known primitives such as mailboxes, events, signals,
and semaphores. While all these latter features are designed
to be fast, fast is a relative term and not sufficient when
dealing with real-time constraints. Nevertheless, many real-
time system designers use these features as a basis upon
which to build real-time systems. This has been effec-
tive in small embedded applications such as instrumen-
tation, communication front ends, intelligent peripherals,
and many areas of process control. Since these applications
are simple it is relatively easy to show that all timing
constraints are met. Consequently, the kernels provide
exactly what is needed. However, as applications become
more complex it becomes more and more difficult to
craft a solution based on priority-driven scheduling where
all timing, computation time, resource, precedence, and
value requirements are mapped to a single priority for
each task. In these situations demonstrating predictability
becomes very difficult. For example, a task may block
when it attempts to access a semaphore, new tasks may
be dynamically invoked at higher priorities, messages may
not be available when a task begins execution, events may
be posted very quickly but there may be no guarantee
that the processing required to respond to the event will
execute in time, etc. Given this large amount of asynchrony,
concurrency, and blocking, the unfortunate implementor
is required to assign the proper priorities that ensures
the system always meets all of its deadlines. Because
of these reasons, some researchers believe that current
kernel features provide almost no direct support for solving
the difficult timing problems, and would rather see more
sophisticated kernels that directly address timing and fault-
tolerance constraints.

Recently, there have been efforts to produce seamless
real-time kernels that scale from the small, proprietary
kemels to large kemels that support the full POSIXKJNIX
interfaces. The idea is to let the user make tradeoffs
in size, performance and functionality depending on the
application. The lowest level of support is being called a
nanokemel or alternatively a microkemel.

B. Real-Time Extensions to Commercial Operating Systems
A second approach to real-time operating systems is the

extension of commercial products, e.g., extending UNIX
to RT-UNIX [16], or POSIX to RT-POSIX, or MACH to
RT-MACH [69], or CHORUS to a real-time version [lo].
The real-time version of commercial operating systems are
generally slower and less predictable than the proprietary
kernels, but have greater functionality and better software
development environments-very important considerations
in many applications. Another significant advantage is that
they are based on a set of familiar interfaces (standards)
that facilitate portability. For UNIX, since many variations
of UNIX have evolved, a new standards effort, called
POSIX, has defined a common set of user level interfaces
for operating systems. In particular, the POSIX P. 1003.4
subcommittee is defining standards for real-time operating
systems. To date, the effort has focused on eleven impor-
tant real-time-related functions: timers, priority scheduling,
shared memory, real-time files, semaphores, interprocess
communication, asynchronous event notification, process
memory locking, asynchronous I/O, synchronous I/O, and
threads.

Various problems exist when attempting to convert a non-
real-time operating system to a real-time version. These
problems can exist both at the system interface as well
as in the implementation. For example, in UNIX interface
problems exist in process scheduling due to the nice and
setpriority primitives and its round robin scheduling pol-
icy. In addition, the timer facilities are too coarse, memory
management (of some versions) contains no method for
locking pages into memory, and interprocess communica-
tion facilities do not support fast and predictable commu-
nication. The implementation problems include intolerable
overhead, excessive latency in responding to interrupts,
partly but very importantly, due to the nonpreemptability
of the kernel, and intemal queues are FIFO. These and
other problems can and have been solved to result in
a real-time operating system that is used for both real-
time and non-real-time processing. However, because the
underlying paradigm of time-sharing systems still exists
users must be careful not to use certain non-real-time
features that might insidiously impact the real-time tasks.
For example, in [16] they list over 60 RT-UNIX system
calls that are not recommended to be used when running
a real-time application. This is very disturbing because in
converting from UNIX to RT-UNIX the following aspects
were changed: scheduling, interrupt handling, IPC, the file
system, I/O support, how the user controls resource use,
timer facilities, memory management, and the basic syn-

62 PROCEEDINGS OF THE IEEE. VOL. 82, NO. 1, JANUARY 1994

chronization assumptions of the kemel. The juxtaposition
of changing almost everything and then ending up with over
60 system calls that should still not be used, should lead us
to question whether extending a commercial time-sharing
OS is the correct approach. We believe that it is not the
correct approach because too many basic and inappropriate
underlying assumptions still exist. This includes:

optimizing for the average case (rather than worst

assigning resources on demand,
ignoring most if not all semantic information about

independent CPU scheduling and resource allocation

On the other hand, the trend to begin with a completely
new implementation of UNIX based on microkemels may
reduce or eliminate some of the above problems. Consider
several more detailed examples from MACH.

MACH is heavily based on lazy evaluation, meaning
that you never do anything until it is really needed. One
example of this strategy is copy-on-write. Here either
a message or part of an address space is not actually
copied at the message send time or at address space
create time, respectively, but delayed until that message
(memory) is actually accessed. On the average this provides
excellent performance. The problem is that large amounts
of execution time may be required at the wrong time to
finally perform the copy, causing a task to miss a deadline.
Basically, it cannot be predicted as to when slowdowns will
occur. Can all forms of lazy evaluation be eliminated to
push MACH towards predictability? Yes, but it is difficult
because of the overpowering integration of this philosophy
in the kemel. Virtual memory is another problem. It is
possible to lock pages in memory to remove some of the
unpredictability (except, it is nontrivial to decide when to
lock and unlock, accounting for the cost of the lock and
unlock, and ensuring that the pages are locked in time).
Does locking pages, by itself, make the virtual memory part
of the system predictable? What about unpredictabilities
due to the memory map tables (lookup and maintenance),
the MMU TLB entries (present or not), hash table entries
used for quick lookup (access time in the table), and
indirect problems such as how by locking many pages we
might affect the performance of both real-time and non-
real-time threads needing pages now being drawn from a
smaller pool? Valuable real-time features that were added to
MACH include real-time threads, real-time synchronization
primitives, support for priority inheritance, and real-time
scheduling, but all of these are still embedded in a time-
sharing paradigm.

Another fundamental problem with the time-sharing par-
adigm is that these operating systems want to remove
control over resources from the application. Such operating
systems consider it their prerogative to decide who should
get resources for the best average case performance. For
example, a multilevel feedback queue will modify the user-
specified priorities to balance 1/0 and CPU performance.

case),

the application, and

possibly causing unbounded blocking.

After a real-time application designer goes through torture
to map all the complexities of his application into a set
of priorities, if the system adjusts these priorities, then
the analysis and evaluation were for naught. Allowing
fixed priorities or another real-time scheduling algorithm
helps, but insidious interactions from the non-real-time
threads, through their resource use and scheduling policy,
might slow down the real-time tasks (in some unanticipated

Given all these problems for RT-UNIX or RT-MACH
can they be used in real-time applications? Yes, certainly
for real-time applications where missing a deadline has
no severe consequences, they can be used. If deadlines
must be guaranteed to be met, these operating systems
can still be used i f the designers can hand craft a set
of priorities that will always work. For example, given
five independent periodic tasks with certain periods and
deadlines, running only these at fixed priorities on these
operating systems can easily be shown to work (however,
it would be just as easy to use the proprietary kernels). As
we add aperiodics, interrupts from the environment, shared
data structures, precedence constraints between tasks, non-
real-time background processing, etc., assigning priorities
such that it will always work becomes difficult and the
designer is still not certain that lurking problems do not
exist due to the underlying time-sharing design. Such an
approach typically has very high cost and is very difficult
to maintain.

way).

C . Research Operating Systems
While many real-time applications will continue to be

constructed with proprietary real-time kernels and with
extensions to commercial time-sharing operating systems,
as discussed above, significant problems still exist. In
particular, the proprietary kernels have difficulty when
scaling to large applications, and the time-sharing exten-
sions emphasize speed rather than predictability, thereby
perpetuating the myth that real-time computing is fast
computing [61]. Trends in the current research in real-time
operating systems include:

identifying that new approaches are needed which
challenge the basic assumptions made by time-
sharing operating systems and developing those new
paradigms,
developing real-time process models
- some systems use the standard process model

both to program with and at execution time,
some systems use the process model to pro-
gram with but translate into a different run-time
model to help support predictability and on-line
guarantees,
some systems use real-time threads,

developing real-time synchronization primitives such
as those that support priority inheritance,
developing solutions that facilitate timing analysis of
both the initial system and upon modifications (the
real-time scheduling algorithms play a large role here),

-

-

RAMAMRITHAM AND STANKOVIC: ALGORITHMS AND SUPPORT FOR REAL-TIME SYSTEMS 63

strongly emphasizing predictability not only of the
kemel but also providing good support for application
level predictability,
retaining significant amounts of application semantics
at run time,
developing support for fault tolerance,
investigating object-oriented approaches,
providing support for multiprocessor and distributed
real-time systems including end-to-end timing con-
straints, and
attempting to define a real-time micro-kemel.

In the remainder of this section we will briefly survey
several research projects to provide a brief idea about the
scope and type of research that is ongoing. The projects
chosen here are representative of a much wider set of work
in the field.

1) MARS: The MARS kemel [13], [27] offers support
for controlling a distributed application based entirely on
time events (rather than asynchronous events) from the
environment. Emphasis is placed on an a priori static
analysis to demonstrate that all the timing requirements are
met. An important feature of this system is that flow control
on the maximum number of events that the system handles
is automatic and this fact contributes to the predictability
analysis. This system is based on a paradigm, i.e., the time-
driven model, that is different than what is found in time-
sharing systems. The scheduling approach is static table-
driven. Support for distributed real-time systems includes
a hardware-based clock synchronization algorithm and a
TDMA-like protocol to guarantee timely message delivery.

2) Spring: The Spring kemel [63] contains real-time
support for multiprocessors and distributed systems. A
novel aspect of the kernel is the dynamic-planning-based
scheduling of tasks that arrive dynamically. This takes
tasks’ time and resource constraints into account and avoids
the need to a priori compute worst case blocking times.
Safety-critical tasks are dealt with via static table-driven
scheduling. The kernel also embodies a reflective archi-
tecture that retains a significant amount of application
semantics at run time. This approach provides a high degree
of flexibility and graceful degradation. These planning
and application semantic features are integrated to provide
direct support for achieving both application and system
level predictability. The kemel also uses global replicated
memory to achieve predictable distributed communication.
The abstractions provided by the kemel include guaran-
tee, reservation, planning, and end-to-end timing support.
Spring, like MARS, presents a new paradigm for real-time
operating systems, but unlike MARS (to date), it strives
for a more flexible combination of off-line and on-line
techniques.

3) MARUTI: The MARUTI system [21] focuses on sup-
port for dynamic on-line guarantees that tasks will make
their deadlines and on fault tolerance. It is object based
and supports distributed systems. Each object has service
access points which are the operations (services) that the
object provides. Information about objects such as their
computation times and deadlines are retained with the ob-

jects to be used by the dynamic-planning-based scheduler.
When an object is invoked the scheduler determines if the
object can be guaranteed to meet its timing constraint. If
so, the schedule for it is added to a calendar that represents
the deterministic manner in which the object will execute
and all resources the object will require are reserved.
MARUTI has been designed in a top-down fashion with
a goal of demonstrating principles. As such, the actual
implementation is high-level and runs on top of UNIX. An
implementation in native mode is underway.

4)ARTS: The ARTS kernel [68] provides a distributed
real-time computing environment that works in conjunc-
tion with the static priority-driven preemptive scheduling
paradigm. The kemel supports the notion of real-time
objects and real-time threads. Each real-time object is time-
encapsulated. This is enforced by a time fence mechanism
which provides a run-time check that ensures that the
slack time is greater than the worst case execution time
for an object invocation about to be performed. If it is,
the operation proceeds, else it is aborted. Each real-time
thread can have a value function, timing constraints, worst
case execution time, phase, and delay value associated
with it. Communication (object invocation) proceeds in a
request-accept-reply fashion, but does not address dead-
lines for messages. A real-time transport protocol has been
developed, but is not yet included in the ARTS kemel.
The ARTS kernel is also tied to various tools that a priori
analyze the system-wide schedulability of the system.

5) CHAOS: The CHAOS system [53] represents an
object-based approach to real-time kernels. This approach
allows easy creation of a family of kemels, each tailored
to a specific hardware or application. This is important
because real-time applications vary widely in their
requirements and it would be beneficial to have one
basic paradigm for a wide range of applications. The
family of kemels is based on a core that supports a real-
time threads package. This core is the machine-dependent
part. Virtual memory regions, synchronization primitives,
classes, objects, and invocations all comprise additional
support provided in each kemel. One of the investigated
scheduling approaches is guarantee-oriented, employing
a variation of the preemptive deadline-first scheduling
algorithm for its feasibility checking [6]. Unlike the
scheduling approach used in Spring in which both timing
and functionality of a task are guaranteed, here, it is verified
that a set of tasks can meet their deadline requirements
based on optimistic assumptions about resource availability,
for instance. Thus depending on blocking for resources, a
task may not achieve its desired functionality, even though
it will meet its timing constraint.

6) HARTOS: The Hexagonal Architecture for Real-Time
Systems (HARTS) consists of multiple sites connected by
a hexagonal mesh network. Each site may be a uniproces-
sor or multiprocessor and contains an intelligent network
processor. The intelligent network processor handles much
of the low-level communication functions. An experimental
operating system called HARTOS [26] is a distributed real-
time kemel running on HARTS. On each site HARTOS

64 PROCEEDINGS OF THE IEEE. VOL. 82. NO. I . JANUARY 1994

runs in conjunction with the commercial uniprocessor OS,
pSOS, so, by itself, is not a full operating system. Rather,
HARTOS focuses on interprocess communication, thereby
providing some support for distributed real-time systems.
In particular, HARTOS supports message send and receive,
nonqueued-event signals, reliable streams, and message
scheduling that provides a best effort approach in delivering
a message by its deadline. Support for fault-tolerant routing,
clock synchronization, and for replicated processes are
planned for the future.

7) DARK: Ada is mandated to be used in embedded
real-time systems for many DoD projects. The Distributed
Ada Real-Time Kemel (DARK) [71] has been developed
to provide support for execution of Ada applications in
a distributed real-time environment. The kemel supports
both Ada tasks and kemel processes which are outside of
the Ada run-time environment. For real-time control, the
application programmer, writing in Ada, deals directly with
kemel processes and the kemel’s scheduler by appropriate
declarations. The scheduler is based on the dynamic best
effort paradigm, where a simple highest priority first sched-
uler is used. DARK also implements layers 2 through 4
of the standard I S 0 reference model to support distributed
communication, There are no special time-related services
provided in the interprocess communication implementa-
tion. The goal of DARK was to provide a near-term option
of how to use Ada in a distributed real-time system.

IV. SUMMARY
This paper presents a categorized summary of work in

the areas of scheduling and operating systems for real-time
applications. In particular, four scheduling paradigms were
identified: static table-driven scheduling, static priority pre-
emptive scheduling, dynamic planning-based scheduling,
and dynamic best effort scheduling. Real-time operating
systems were categorized into three classes: small, propri-
etary kemels, real-time extensions to commercial operating
systems, and research kemels. Rather than being exhaus-
tive, we have provided specific examples from each of the
categories. Exciting developments and serious limitations of
the current work both in scheduling and operating systems
was also noted. Important interactions between scheduling
algorithm development and operating systems exist. For
example, whereas scheduling is an integral part of any
real-time operating system, barring a few exceptions, most
scheduling work has ignored the overheads involved in
scheduling. As we saw, for predictability, it is essential
to account for all the overheads involved. This is another
area where there are new challenges.

It is also important to point out that in several real-world
applications, there exists end-to-end timing constraints with
respect to computations that span many processing sites.
Allocation and scheduling the communication as well as
processing resources in an integrated fashion still remains
a problem awaiting efficient and flexible solutions. Fur-
thermore, many applications with end-to-end constrains
have prababilistic requirements. For example, in telephone

switching, it is required to establish z percentage of the
connections within y amount of time. Schemes to meet such
performance requirements and methodical approaches for
showing that the requirements will be met are also worthy
of further exploration.

REFERENCES
[l] L. Alger and J. Lala, “Real-time operating system for a nuclear

power plant computer,” in Proc. Real-Time Systems Symp., Dec.
1986.

[2] T. Baker, “Stack-based scheduling of real-time processes,”
Real-Time Syst. vol. 3, no. 1. pp. 67-100, March 1991.

[3] J. A. Bannister and K. S. Trivedi, “Task allocation in fault-
tolerant distributed systems,” Acta Informatica, pp. 261-281,
Springer-Verlag, 1983.

[4] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L.
Rosier, D. Shasha, and F. Wang, “On the competitiveness of on-
line real-time scheduling,” in Proc Real-Time Systems Symp.,
Dec. 1991.

[SI S. Biyabani, J. A. Stankovic, and K. Ramamritham, “The
integration of deadline and criticalness in hard real-time sched-
uling,” in Proc. Real-Time Systems Symp., Dec. 1988.

[6] B. A. Blake and K. Schwan, “Experimental evaluation of a
real-time scheduler for a multiprocessor system,” IEEE Trans.
Software Eng., vol. 17, no. 1, Jan. 1991

171 J. Blazewicz, W. Cellary, R. Slowinski, and J. Weglarz, “Sched-
uling under resource constraints-deterministic models,” in An-
nals of Operations Research. Baltzer AG Scientific Pub. Com-
pany, 1986.

[8] G. D. Carlow, “Architecture of the Space Shuttle primary
avionics software system,” Commun. ACM, vol. 27, no. 9, Sept.
1984.

[9] H. Chetto and M. Chetto, “Some results of the earliest deadline
scheduling algorithm,” IEEE Trans. Software Eng., vol. 15, no.
10, Oct. 1989.

[lo] Chorus Kernel 1,3 r4.0 Programmer’s Reference Manual, Tech.
Rep. CSDR-91-71, Chorus Systems, Sept. 1991.

[I 11 W. Chu and L. Lan, “Task allocation and precedence relations
for distributed real-time systems,” lEEE Trans. Comput., vol.
C-36, no. 6, June 1987.

[121 E. G . Coffman, Ed., Computer and JohlShop Scheduling Theory.
New York: Wiley, 1976.

1131 A. Damm, J. Reisinger, W. Schnakel, and H. Kopetz, “The
real-time operating system of Mars,” Operating Syst. Rev., pp.
141-157, July 1989.

[14] S . Davari and S. K. Dhall, “An on line algorithm for real-time
tasks allocation,” in Proc. Real-Time Systems Symp.. Wash-
ington, DC: Computer Soc. Press, Dec. 1986.

[15] M. L. Dertouzos and A. K. L. Mok, “Multiprocessor on-line
scheduling of hard-real-time tasks,” IEEE Trans. Software Eng.,
vol. 15, no. 12, Dec. 1989.

[16] B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, and
M. Roberts. Real-Time Unix Systems. Norwell, MA: Kluwer,
1991.

[17] M. R. Garey and D. S. Johnson, “Complexity results for
multiprocessor scheduling under resource constraints,” SIAM
.I. Comput., vol. 4, 1975.

[18] -, Computers and Intractability: A Guide to the Theory of
NP-Completeness.

[191 R. L. Graham, “Bounds on multiprocessing timing anomalies,”
SIAM J . Appl. Math., vol. 17, no. 2, Mar. 1969.

[20] R. L. Graham, E. L. Lawler, J . K. Lenstra, and A. H. G. R. Kan,
“Optimization and approximation in deterministic sequencing
and scheduling: A survey,” Annals Discrete Math., vol. 5 , 1979.

[21] 0. Gudmundsson, D. Mose, K. KO, A. Agrawala, and S .
Tripathi, “MARUTI, An environment for hard real-time appli-
cations,” in Mission Critical Operating Systems, A. Agrawala,
K. Gordon, and P. Hwang, Eds.

[22] V. P. Holmes, D. Harris, K. Piorkowski, and G. Davidson,”
“Hawk: An operating system kemel for a real-time embedded
multiprocessor,” Sandia Nat. Labs., Rep., 1987.

[23] K. S . Hong and J. Y-T. Leung, “On-line scheduling of real-time
tasks,” in Proc. Real-Time Systems Symp.. Dec. 1988.

[24] C-J. Hou and K. G. Shin, “Load sharing with considerations of
future arrivals in heterogeneous distributed real-time systems,”
in Proc. Real-Time Systems Symp., Dec. 1991, pp. 94-103.

San Francisco, CA: Freeman, 1979.

10s Press, 1992.

RAMAMRITHAM AND STANKOVIC: ALGORITHMS AND SUPPORT FOR REAL-TIME SYSTEMS 65

[25] D. Jensen, “The kernel computational model of the alpha
real-time distributed operating system,” in Mission Critical
Operating Systems, A. Agrawala, K. Gordon, and P. Hwang,
Eds. 10s Press, 1992.

[26] D. Kandlur, D. Kiskis, and K. Shin, “A real-time operating
system for HARTS,” in Mission Critical Operating Systems, A.
Agrawala, K. Gordon, and P. Hwang, Eds. 10s Press, 1992.

[27] H. Kopetz, A. Demm, C. Koza, and M. Mulozzani, “Distributed
fault tolerant real-time systems: The Mars approach,” IEEE
Micro, pp. 25-40, 1989.

[28] C. M. Krishna and K. G . Shin, “On scheduling tasks with a
quick recovery from failure,” IEEE Trans. Comput., vol. C-35,
no. 5, pp. 448-55, May 1986.

[29] E. Lawler, “Recent results in the theory of machine scheduling,”
Marhematical Programming: The State of the Art, A. Bachem
et al., Eds. New York: Springer-Verlag, 1983.

[30] E. L. Lawler and C. U. Martel, “Scheduling periodically oc-
curring tasks on multiple processors,” Information Processing
Lett., vol. 12, no. 1, Feb. 1981.

(311 J. P. Lehoczky, L. Sha, and J. Strosnider, “Enhancing aperiodic
responsiveness in a hard real-time environment,” in Proc. Real-
Time Systems Symp., 1987.

[32] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotone
scheduling algorithm: exact characterization and average case
behavior,” in Proc. IEEE Real-Time Systems Symp., Dec. 1989,
pp. 166171.

[33] D. W. Leinbaugh, “Guaranteed response time in a hard real-
time environment,” IEEE Trans. Software Eng., vol. SE-6, Jan.
1980.

[34] J. K Lenstra, A. H. G. R. Kan, and P. Bruchker, “Complex-
ity of machine scheduling problems,” in Annals of Discrete
Mathematics. New York: North-Holland, 1977.

[35] A. L. Liestman and R. H. Campbell, “A fault tolerant scheduling
problem,” IEEE Trans. Software Eng., vol. SE-12, no. 11, pp.
1089-1095, Nov. 1986.

[36] C. L. Liu and J. Layland, “Scheduling algorithms for multipro-
gramming in a hard real-time environment,” J . Amer. Compt.
Mach., vol. 20, no. 1, pp. 4 M 1 , 1973.

[37] J. W. S. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W.
Zhao, “Algorithms for scheduling imprecise calculations,’’ IEEE
Comput., vol. 24, no. 5, pp. 5848, May 1991,

[38] J . W. S. Liu et al., “Imprecise computations,” this issue, pp.
W O .

[39] C. D. Locke, “Best-effort decision making for real-time sched-
uling,” Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh,
PA, May 1985.

[40] -, “Software architecture for hard real-time applications:
Cyclic executives vs. fixed priority executives,” in Real-Time
Systems, vol. 4, no.1.

[41] G. K. Manacher, “Production and stabilization of real-time task
schedules,” J . Assoc. Ccomput. Mach., vol. 14, no. 3, 1967.

[42] A. K. Mok, “Fundamental design problems of distributed sys-
tems for the hard real-time environment, Ph.D. dissertation,
Dep. Elec. Engi. Comput. Sci., Mass. Inst. Techno]., Cambridge,
MA, May 1983.

[43] D. T. Peng and K. G. Shin, “Static allocation of periodic tasks
with precedence constraints in distributed real-time systems,”
in Proc. Int. Conf. on Distributed Computing, June 1989, pp.
190- 198.

[44] R. Rajkumar, L. Sha, and J. Lehoczky, ‘‘ Real-time synchroniza-
tion protocols for multiprocessors,” in Proc. Real-Time Systems
Symp., 1988.

[45] R. Rajkumar, L. Sha, J. P. Lehoczky, and K. Ramamritham, in
Principles of Real-Time Systems, S. Son, Ed. (to appear), 1994.

[46] K. Ramamritham and J. A. Stankovic, “Dynamic task schedul-
ing in distributed hard real-time systems,” IEEE Software, vol.
1, no. 3, pp. 65-75, July 1984.

[47] K. Ramamritham, “Allocation and scheduling of complex peri-
odic tasks,” in 10th Int. Conf. on Distributed Computing Systems
(Paris, France, June 1990).

[48] K. Ramamritham and J. A. Stankovic, “Scheduling strategies
adopted in Spring: An overview,” in Foundations of Real-
Time Computing: Scheduling and Resource Management, A. van
Tilborg and G. Koob, Eds.

[49] K. Ramamritham, J. A. Stankovic, and P. Shiah, “Efficient
scheduling algorithms for real-time multiprocessor systems,”
IEEE Trans. Parallel Distributed Syst., vol. 1, no. 2, pp. 184-94,
Apr. 1990.

Norwell, MA: Kluwer, Mar. 1992.

[50] K. Ramamritham, J. A. Stankovic, and W. Zhao, “Distributed
scheduling of tasks with deadlines and resource requirements,”
IEEE Trans. Comput., vol. 38, no. 8, pp. 11 10-1123, Aug. 1989.

[51] K. Ramamritham, G. Fohler, and J. M. Adan, “Issues in the
static allocation and scheduling of complex periodic tasks,”
in 10th IEEE Workshop on Real-Time Operating Systems and
Software, May 1993.

[52] J. Ready, “VRTX: A real-time operating system for embedded
microprocessor applications,” IEEE Micro, pp. 8-17, Aug.
1986.

[53] K. Schwan, A. Geith, and H. Zhou, “From Chaos“””‘ to
Chaos“’ : A family of real-time kernels,” in Proc. Real-Time
Systems Symp., Dec. 1990, pp. 82-91.

[54] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronization, IEEE
Trans. Comput., vol. 39, no. 3, pp. 1175-1 185, 1990.

[55] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham,
“Mode change protocols for priority-driven preemptive sched-
uling,” Real-Time Syst., vol. 1, no. 3, pp. 243-264, Dec. 1989.

[56] L. Sha et al., “Generalized rate-monotonic scheduling theory:
A framework for developing real-time systems,” , this issue,

[57] C. Shen, K. Ramamritham, and J. A. Stankovic, “Resource
reclaiming in multiprocessor real-time systems,” IEEE Trans.
Parallel Distributed Syst., vol. 4, no. 4, pp. 382-397, Apr. 1993.

[58] B. Sprunt, L. Sha, and J. Lehoczky, “ Aperiodic task scheduling
for hard real-time systems,” Real-Time Syst., vol. 1, no. 1, pp.
2740, 1989.

[59] J. A. Stankovic, “ stability and distributed scheduling algo-
rithms,” IEEE Trans. Software Eng., vol. SE-11, no. 10, pp.

[60] J. A. Stankovic, “Decentralized decision making for task allo-
cation in a hard real-time system,” IEEE Trans. Comput., Mar.
1989.

[61] -, “Misconceptions about real-time computing,” IEEE Com-
put., vol. 21, no. 10, Oct. 1988.

[62] J. A. Stankovic and K. Ramamritham, “The Spring kemel: A
new paradigm for real-time operating systems,” ACM Operating
Syst. Rev., vol. 23, no. 3, pp. 54-71, July 1989.

[63] -, “The Spring kernel: A new paradigm for hard real-time
operating systems,” IEEE Software, vol. 8, no. 3, pp. 62-72,
May 1991.

[64] J. A. Stankovic, K. Ramamritham, and S. Cheng, “Evaluation
of a flexible task scheduling algorithm for distributed hard real-
time systems,” IEEE Trans. Comput., vol. C-34, no. 12, pp.
11361143, 1985.

[65] J. A. Stankovic, “SpringNet: A scalable architecture for high
performance, predictable, distributed, real-time computing,”
Univ. of Massachusetts, Tech. Rep. 91-74, Oct. 1991.

[66] J. A. Stankovic, F. Wang, and K. Ramamritham, “Dynamic
scheduling to support adaptive fault tolerance in real-time
systems,’’ submitted for publication, Dec. 1992.

[67] SYSTRAN Corp., Scramnet Network Reference Manual, Day-
ton, OH, 45432.

[68] H. Tokuda, and C. Mercer, “ARTS: A distributed real-time
kerne1,”ACM Operating Systems Rev., vol. 23, no. 3, July 1989.

[69] H. Tokuda, T. Nakajima, and P. Rao, “Real-time Mach: To-
wards a predictable real-time system,” in Proc. Usenix Mach
Workshop, Oct. 1990.

[70] H. Tokuda, J. Wendorf, and H. Wang, “Implementation of a time
driven scheduler for real-time operating systems,” in Proc. Real-
Time Systems Symp. Washington, DC: Computer Soc. Press,
Dec. 1987.

[71] R. van Scoy, J. Bamberger, and R. Firth, “An overview of
DARK,” in Mission Critical Operating Systems, A. Agrawala,
K. Gordon, and P. Hwang, Eds.

[72] F. Wang, K. Ramamritham, and J. A. Stankovic, “Bounds on
the schedule length for some heuristic scheduling algorithms
for hard real-time systems,” in Proc. Real-Time Systems Symp.,
1992.

[73] J. Xu and L. Parnas, “Scheduling processes with release times,
deadlines, precedence, and exclusion relations,” IEEE Trans.
Software Eng.. pp. 366369, Mar. 1990.

[74] W. Zhao and K. Ramamritham, “ Simple and integrated heuris-
tic algorithms for scheduling tasks with time and resource
constraints,” J . Syst. Software, vol. 7, pp. 195-205, 1987.

[75] W. Zhao, K. Ramamritham, and J. A. Stankovic, “Scheduling
tasks with resource requirements in hard real-time systems,”

pp. 0 ~ 0 .

1141-1 152, 1985.

10s Press, 1992.

66 PROCEEDINGS OF THE IEEE, VOL. 82, NO. I , JANUARY 1994

IEEE Trans. Sofmnre Eng., vol. SE-12, no. 5 ,
1987.
-, “Preemptive scheduling under time and
straints,” IEEE Trans. Comput., vol. C-36, no. 8
Aug. 1987.

pp. 567-

resource
, pp. 949-

-577,

con-
-960,

Krithi Ramamritham (Member, IEEE) re-
ceived the Ph.D. degree in computer science
from the University of Utah, Salt Lake City, in
1981.

Since 1981 he has been wuth the Department
of Computer Science at the University of
Massachusetts, Amherst, where he is currently
a Professor. Dunng 1987-1988, he was a
Science and Engineering Research Council (UK)
Visiting Fellow at the University of Newcastle-
upon-Tyne (UK) and a Visiting Professor at the

Technical University of Vienna, Austna He is a Director of the Spnng
project whose goal is to develop scheduling algonthms, operating system
support, architectural support, and design strategies for distnbuted real-
time applications. His other current research activities deal with enhancing
performance of applications that require transaction support through the
use of semantic information about the objects, operations, transaction
model, and application. He is an Editor of the Real-Time Sysrems Journal
and the Distributed Syrtemr Engineering Journal and has co-authored two
IEEE tutonal texts on hard real-time systems

John A. Stankovic (Fellow, IEEE) received the
B.S. degree in electrical engineering, and the
M.S. and Ph.D. degrees in computer science,
all from Brown University, Providence, RI, in
1970, 1976, and 1979, respectively.

He is a Professor in the Computer Science
Department at the University of Massachusetts,
Amherst. His current research interests include
investigating various approaches to real-time
scheduling on local area networks and multi-
processors, developing flexible, distributed, hard

real-time operating systems, and developing and performing experimental
studies on real-time distributed database protocols. He ic currently building
and experimenting with the Spring Kemel which is based on a new
scheduling paradigm and on ensuring system-level predictability, not only
operating system predictability. The distributed database work is being
performed on the RT-CARAT testbed. The RT-CARAT testbed has been
operational for several years and includes many protocols for real-time
transactions. He has held visiting positions in the Computer Science
Department at Camegie-Mellon University, Pittsburgh, PA, at INRIA in
France, and at the Scuola Superiore S. Anna in Pisa, Italy. He received an
Outstanding Scholar Award from the School of Engineering, University
of Massachusetts. He is the Editor-in-Chief for Real-Time Systems and
was Editor for IEEE TRANSACTIONS ON COMPUTERS for four years. He
also served as Guest Editor for a Special Issue on Parallel and Distributed
Computing in IEEE TRANSACTIONS ON COMPUTERS and for a Special
Issue on Distributed Computing in IEEE COMPUTER. He is the series
editor for a book series on real-time systems with the Kluwer Publishing
Company. He serves on the Intemational Advisory Board for the Journal
of Computer Science and Informatics (Computer Society of India). He
has given Distinguished Lectures at various universities, and has been a
Keynote Speaker at various conferences.

Dr. Stankovic is on the IEEE executive committee for distributed
computer systems, is the Chair of the IEEE technical committee on Real-
Time Systems, and served as an IEEE Computer Society Distinguished
Visitor for two years.

RAMAMRITHAM AND STANKOVIC: ALGORITHMS AND SUPPORT FOR REAL-TIME SYSTEMS 61

