Dynamics

The branch of physics that treats the action of force on bod-
1es 1 motion or at rest; kinetics, kinematics, and statics,
collectively. — Websters dictionary

Outline

e Conservation of Momentum
e Inertia Tensors
e Newton/Euler Dynamics

e State Space, Configuration Space, and
Cartesian Forms

e Lagrangian Dynamics

e Computational issues
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Newton’s Laws

. the particle will remain in a state of constant rectilinear motion
unless acted on by an external force;

. the time-rate-of-change in the momentum (mw) of the particle is

proportional to the externally applied forces, F' = %(mv);

. and any force imposed on body A by body B is reciprocated by an
equal and opposite reaction force on body B by body A.
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particle of mass m moving with
uniform rectilinear velocity v ...

1 1
Area = va = érvL = constant

Therefore, the quantity, | L = mrv | (angular momentum) is conserved.

For a collection of such particles:

.
Liotal = % Ly = % METEV ] | = in M0k

When91:92:...:9k
I =Y mr:
L = (Zm 7“2> 0 *
total . (rotational moment of inertia)
(kg —m?]
and p
T= 76 = 16
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Inertia Tensor

MASS MOMENTS MASS PRODUCTS
OF INERTTA OF INERTIA
Ie = I I(y* + 2%) pdv L., = I 1 zypdv
I, =1 11(z* + 2*)pdv I, = 1] zzpdv
I, =I71J(z*+y*)pdv L. =11Tyzpdv
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EXAMPLE:

I, = /Oh /Ol /Ow(y2 + 2%) pdzdydz

hofl
= /0 /O(y2+z2)wpdydz
3 l

iy .h = Aflki;-FZ2y) wpdz

0
13
— oh(§ + 22D wpdz

h

“\3 73 OWP)

e U
= | —+—|w
3 T3 WP

or, since the mass of the rectangle m = (wlh)p,

' ' 132 lz3)

m

I, = 3 (I +1?) .

[P+ b7 Ml ™ hw
AT=] 2wl  Zw’+hY)  Zhl
Thw hl 2%+ w?) |
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Parallel Axis Theorem

the moments of inertia look like

A[zz = CMIzz + m( AQ%M + Ay(QJM)v

and the products of inertia are,

i

CM
Ty — I

Ty + m( AQjCM AyCM)-
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EXAMPLE:

ptrt| |
|
Ml = L.—m(Ysty + veu)

e

ST
and

oM., = :L[xy—mr(nAxCM you)
— Z(wl) — Z(wl) =0

resulting in the diagonalized inertia tensor
(12 + h?) 0 0

CMI:% 0 (w?+hY) 0

0 0 (I? + w?)
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Rotating Coordinate Systems

Consider a rotation about the Z axis,
an angular velocity w, displaces the

X . Z axis in the gy direction
W i

y A N

Ty, = WY
02D

Q) . . . A . .
@y X Similarly, w, displaces the = axis in
W7 the —Zz direction
Wy M
Wz so that, in general,
y x WY —wyz

or, for arbitrary vectors v = r,& + r,y + r,z where r,, r,, r, are con-
stants in the coordinates of the rotating frame ...

=y
I
|
&
N
()
&
8
ﬁ
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Rotating Coordinate Systems: differentiation
rule

Now, consider the case when vector rg written in rotating frame B
varies with respect to time:

A=A RB(t)T'B(t).

d

s = 4 WRo()ra(t)]

— sRprp+ sRprp

= 4Rp [7-"B + (wB X ’I“B)]

o LR5(t)()p] =4 Rp | ()5 + (w5 X ()p)
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Rotating Coordinate Systems: EXAMPLE

Low pressure systems are regions in which large scale atmospheric flows
converge. For the stationary (nonrotating) planet, this would result in
flow lines directed radially inward.

But the earth rotates, so as each
molecule in the atmosphere follows
the pressure gradient, it will also
experience a tangential acceleration.
If we designate a stationary inertial
frame A about which the earth frame
(frame B) rotates;

Uy = ARB(t)?TB
Vg = ARB[UB+<QX?7B)]

so that an observer on the surface of

the planet sees:

’UB = BRA['JA] — ((3 X ’UB)
The conjunction of a convergent flow and a rotating system, therefore,
leads to a counterclockwise flow in the northern hemisphere. High

pressure systems should rotate clockwise in the northern hemisphere,
and just the opposite effects are observed in the southern hemisphere.
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Newton/Euler Equations

Newton’s Equation

F = (Rymv;) = Rym;0; + R,;m;v;

a
dt
= R,; [m0; + (w; X myv;)]

Euler’s Equation

d
= Rz [MZUJZ + (wi X Mzwz)]
where F' and N are the net force and torque, respectively acting upon
link ¢ written in inertial coordinates, and R; is the rotation matrix

relating frame ¢ to the inertial frame, and wj is the total angular velocity
of link ¢ written in link ¢ coordinates.
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Newton/Euler Equations

If ' and N are written in the local coordinate frame for link ¢, then

ml 0 F
0 M N

w X muv
w X Mw

v

|-w

w

where W € RS is the generalized force or wrench consisting of forces
and torques acting on link ¢ written in link ¢ coordinates.

therefore, if we can account for the state of motion, (w,w, v),
then we can compute the total load, W, acting on the cen-
ter of mass and define the equation of motion for link ¢
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Recursive Newton/Euler Equations

Assume that the absolute state of motion, (w,w, ©);, is known at frame
i our goal is to write expressions for these quantities at frame (7 4 1).

Angular Velocity: w
REVOLUTE : "lwiy = iuR; 'wi+ 9i+12i+1
PRISMATIC : i+1wi+1 = 'H—lRi "wi

Angular Acceleration: w

REVOLUTE : "lwiq = i+1R; Wi + (1R 'wy X Oi11201)
+0i112i41

PRISMATIC : ™1 = R,
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Recursive Newton/Euler Equations: cont.
Linear Acceleration: v
"B = oR1 "o+ °h

07762 = oR1 1ﬁQ+( Ywix gRy lﬁQ)+ 't

= R4 15@ +(Pw; x Ry 15@) + (%@ x Ry 'Pp)
+("wr x Ry 15@) + (Ywy; x %wy x oRy 'pg) + Uy
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Recursive Newton/Euler Equations: cont.

Linear Acceleration: v

Now, substitute:
frame 0 & frame (i — 1)
frame 1l < frame
frame 2 & frame (i + 1)

1+15 .
Uit1 = i+1d%i-1

iR P + 2T wi X iR )
+("Twi X o1 Ry i)
+( g x Tlap xR i) + i_lﬁi]
= 2'+1Ri[ Pit1 +2( Wi X Pr) + (s X i)
+(fwi X wi X i) +

REVOLUTE : 'p;., = const, sz ﬁ;ﬂ =0
z+177z+1 i+1R; [ + (Wi X "Pig1)
+(fwi X fwi X Pig)]

PRISMATIC : fiyy = dizy, 'y = dyd i, iD= di;
z+1172+1 i1 Ry [ U; + d iLi + 2( wz- X dziz)
‘|‘< iwi X iwi X dli'z)]
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Recursive Newton/Euler Equations: cont.

Now, refer the translational acceleration to the center of mass:

+1 = 1+1 > 1+1

i+1 - i+1 i+1
Wi41 X pcm)-i-( Wit1 X Wi X Pcm)+ Vit

1+1 - —
Uem,(i+1) = (

and we may write the Newton-Euler equation of motion:

1+1 o 1+1
Fiiyig = mi

Uem i+1

+1 41 +1 +1
N = Mg T+ (T win X Mg T wig)
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> Forces = 'F;= "fi— ;Riy1 " fir1, or
. . - 1
"fi="F,+ iRiv1 " fin

>.Torques = iNi = im— 7;777;+1—( 7;pcm>< ifi)_<(ipi+1_ ipcm) X if7;+1,
but, ‘f; = ‘Fy+ ;Rij41 " fii1, so that,
i

'‘Ni= " — Mis1 — ("Pem X "Fy) — ("pis1 X "fir1)

or,

M= "Ni+ iRiv1 "is1 + ("Pem X "F) + ("pis1 X iRiv1 T fin1)
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EXAMPLE: outward /inward iterations 2DOF,
planar arm
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Lagrangian Dynamics

Definition (Lagrangian) - The difference between the kinetic and
potential energy of a dynamical system.

L(g,q) = T(q,9) — V(q)

Theorem: (Lagrange’s Equations) The equations of motion
for a mechanical syste with generalized coordinates ¢ € R™ and La-
grangian, L are given by:

where T; is the vector of external forces acting on the " generalized
coordinate, g;.

In vector coordinates,

proof: Calculus of Variations (beyond the scope of this course)
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Lagrangian Dynamics — some intuition

Suppose that our Lagrangian is the difference between some kinetic
energy %mq’Q and some potential energy mgq

d foL
dt 1 0q |
410 (1)
dt 19g \2"? )|
d .
%(mq)
d
ﬁ(momentum)

20

oL,
o
0
oK

T

(mgq) + T

= mg+7T

= applied force Newton’s Equation
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EXAMPLE: Lagrangian dynamics
2 DOF planar arm
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