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Chapter 6

Control Theory

In this chapter, we examine tools for control synthesis in the frequency domain. The 1 Degree-of-

Freedom (DOF) direct-drive robot manipulator is used to illustrate control synthesis, specifically

the issues surrounding the composition of a discrete time controller and a continuous plant.

6.1 Closed Loop Transfer Functions

Figure 6.1 is a schematic representing the basic structure of all feedback control systems.
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Figure 6.1 Generalized Feedback Control Structure

The input reference state, R, is compared to the feedback state, generating an error signal, E. This

error is supplied to the feedforward elements of the controller, G, which generally consists of some

control stage composed with the physical device which is to be regulated. The result is a state of

the system from which we derive the controlled variable, C. The feedback elements of the controller

(e
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transform the controlled variable into a form consistent with the reference input. Elements G and

H are often referred to as the forward and feedback transfer functions, respectively, since they

transform input signals into another form via differential equations expressing the dynamics of the

system. If we are given an input reference signal, then by inspection of Figure 6.1:

C = GE
B = HC, and
F = R-B

and the closed loop transfer function (cltf) can be derived:

¢c GE Gr-B 6@ & @&  d
R- R R  R/R-B) (E+B)JE 1+BJ/E 1+HC/E "
c_a
R 1+GH

This result suggests that the general feedback control struc-
ture may always be expressed as the equivalent feedforward
system depicted in Figure 6.2. This form of the transfer func-
tion relates the controlled variable, C, directly to the refer-
ence input, R.

c G R G

R=Tign = (TCHC=@R 66  —— T

If we consider the “unforced” differential equation of motion

for the regulated system, that is, R = 0, we find the relation- Figure 6.2 The Closed Loop

ship (1+ GH)C = 0 which is simply the homogeneous form of
the equation of motion. This implies that the characteristic
equation for this system is expressed in the denominator of
the closed loop transfer function, (1 + GH) and, as we shall
see, the stability and the response of the closed loop system
are determined completely by this characteristic equation.

Transfer Function

6.2 The 1 DOF Direct-Drive Robot in the Time Domain

In the sections to follow, we will consider the implications of computational latency on the stability

of feedback systems. The model for our discussion will be a simplified model of a 1 DOF, direct

drive robot arm. This system which serves as the basis for this model is illustrated in Figure 6.3.
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Figure 6.3 The 1 DOF Direct-Drive Robot Arm

This idealized motor produces a torque, 7, proportional to the error between the reference and
actual motor positions.
T = A(bref — bact) = Ae, (6.7)

where A is the amplifier gain. This torque produces an angular acceleration of the motor armature,
J, against a viscous (damper) load, B.

T = Jéact + Béact (68)

The feedback control loop which expresses this system model is pictured in Figure 6.4.
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Figure 6.4 A Feedback Controller for the 1 DOF Direct-Drive Robot Arm

Combining Equations 6.7 and 6.8, and using the differential operator, D, yields
(JD? + BD)f,(t) = 7 = Ae. (6.9)

The feedforward transfer function in Figure 6.4 transforms the error, e, into 8,.;. Using Equation 6.9
we may write the feedforward transfer function as follows:

G o lw_ A A
~ "¢ T JD?+BD D(D+B/J)

K
- D(D+a) (610)
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where K = A/J and a = B/J. The feedback transfer function, H, is just unity in this case, so we
may write the closed loop transfer function as:

gcont — G
gref 1+GH
K
_ _DDta)
1+ D_(g—f—a_)
K
= —— 6.11
DD +a)+ K (6.11)
6.3 Laplace Transform
If f(t) is a function of time, ¢, then the Laplace transform, F = L[f(t)], is defined by:
F(s) = / F(t)e*tdt. (6.12)
0

The variable, s, is a complex quantity of the form, o+ jw. The Laplace integral will converge if f(t)
is piecewise continuous, and is of exponential order — i.e., there exists an a such that e™|f(t)]
is bounded for all £ < T where T is some finite time. A linear differential equation with constant

coefficients and a finite number of terms is Laplace-transformable.

Table 6.1 includes many functions which are commonly encountered in linear system analysis. it is

Table 6.1: Laplace Transform Pairs

Name f(t) F(s)
unit impulse a(t) 1
unit step u(t) 1
ramp t ;
nt*-order ramp " s:‘:'l
exponential e—at s;a
ramped exponential ﬁt”_le_“t GFa)"
sine sin at ;2%5
cosine cos at e
damped sine e “sinwt ﬁw
damped cosine e “sinwt ﬁ;_‘_—wg
hyperbolic sine sinh at P
hyperbolic cosine cosh at oL

generally possible to solve for a function, f(¢), whose Laplace transform is a given rational function
of s, by converting it into a sum of partial fractions and then finding functions, f(t¢);, whose Laplace

transform is each partial fraction.
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Table 6.2 summarizes three important theorems related to the Laplace transform which will come

in handy in subsequent examples.

Table 6.2: Laplace Transform Theorems

Name Theorem

Derivative ﬁ[% = sF(s) — f(0+)
Integral L [‘fot f(t)dt] =s5"1F(s)
Shifting L[f(t — to)u(t — to)] = e " F(5s)

6.4 The 1 DOF Direct-Drive Robot in the Frequency Domain

In Table 6.2 we see
LIDf(t)] = sL[f(?)]

This identity allows us to transform the transfer equation for the 1 DOF, direct-drive robot,

0 K
act _ . (6.13)
ey DD+ a) 1 K O3, [ ]9,
o
The result is: s(sta)+K
oot _ K (6.14)
O(8)rey S(s+a)+ K’ ) Figure 6.5 The closed-loop
transfer function in the frequency

Figure 6.5 illustrates the control loop transfer function ex-
pressed in the frequency domain.

domain.

EXAMPLE: Suppose that at t = 0, we apply a unit step reference input to our direct drive robot.

The transform of the unit step is:

@ | = =

Therefore, if we let K = (A/J) =1 and a = (B/J) = 2 in Equation 6.1/

1 1
O(8)cont = 82(8 T2)+1 = s(s + 1)2 (6.15)

A partial-fraction expansion of this quotient yields:

O eomt = o=ty P, c
cont T S(s+1)2 s (s+1) (s+1)2
1 -1 -1
= 4 + (6.16)

s (s+1) (s+1)?
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The inverse Laplace transform of these terms yields (from the tables):
O ) cont =1 —e b —te™" (6.17)

so that att =0, 0(t)cont = 0, but as t — oo, the direct drive robot converges to the reference input.

Recall that if we consider the “unforced” differential equation of motion for the regulated system,
that is, R = 0, we find the relationship (1 + GH)C = 0 which is simply the homogeneous form of
the equation of motion. This implies that the characteristic equation for this system is expressed
in the denominator of the closed loop transfer function, (1 + GH) and that the stability and the
response of the closed loop system are determined completely by this characteristic equation. In

the previous example,

G _ 6(5)cont _ K (6 18)
1+GH  O(s)rey S(s+a)+ K’ '
The characteristic equation of the system is then:
s(s+a)+K=s>+as+ K =0. (6.19)

In the example above, with K = 1 and @ = 2, the characteristic equation was s> +2s + 1 =
(s + 1)2. The repeated root of this characteristic equation, s = —1, is what gives rise to the
negative exponential terms in the time domain solution. In fact, these roots must be negative,
since positive roots will yield positive exponentials which suggests that the time domain solution

will be unbounded as t — oco.

It should be clear that the nature of the system re- K>+e |--- unstable -—
sponse and the stability of the system is directly A T
related to the roots of the characteristic equation. TTTTTTTTToo
These roots are a function of K = (4/J) mnourdi- | |eemmmm—

i . . i ([CHN [
rect drive robot (the ratio of the amplifier gain to the

robot’s rotational inertia). K from <
If welet a = (B/J) = 2, and allow K to vary between @ |7 |- 2 ___

—oo and +oc the Laplace transform yields the root A e~
locus pictured in Figure 6.6. K=0 T
The system stability is directly dependent on the se- | [
lection of K. Moreover, for each stable controller T
there is a range of performance characteristics (speed,
overshoot, compliance, settling time, etc.) which also

depend on the K employed.

Figure 6.6 The Root Locus for the 1
DOF, Direct Drive Robot Arm
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6.5 Digital Controllers

Figure 6.7 illustrates a digital implementation of the control loop we have been developing for the
1 DOF direct-drive robot arm. The diagram represents the integration of a digital control system
and a continuous plant. A continuous motor position error is regularly sampled and converted into
a digital signal. The control algorithm transforms the digital position error into a digital command
which is subsequently converted back into a continuous signal and applied to the plant. While a
digital controller is typically much easier to implement and to modify, there are costs associated
with this convenience. There are two related, fundamental design issues associated with digital

controllers.

asref control K a9
AD = algorithm = DA s(sta)+K

act

|

Figure 6.7 A Digital Controller for the 1 DOF, Direct Drive Robot Arm

1. The controller only looks at the state of the system and the reference input signal at discrete
instants. This implies that there are limitations to the frequency of input and state fluctua-
tions observable by this system. The Sampling Theorem requires that the controller sampling
frequency be at least twice the highest frequency component in the reference input or in the
plant response. If events in the world occur too quickly for a fixed sampling rate, then these

events are not completely observable and may induce instabilities in the system.

2. Aside from these observability problems, it takes a finite amount of time following an obser-
vation before a control response can be generated. The plant will no longer be in the state
that elicited this particular control action. This effect can be modeled as a pure delay in the

signal propagation. We will illustrate this effect with the following example.

6.5.1 Computational Latency

EXAMPLE: The Laplace transform of a signal that is delayed by a fized time is derived from the
following: -
F(s) = / F(t —to)e*tdt.
0
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If we make a change of variables, t' =t — tg, we may write this as:
o0 !
Pl = [ f)e
¢
0 [e.e]

= eiStO/ f(t')eiStldt'

t
o0 ,
_ a%/ F@)e*tdt +C
0
e SOF(s)+C (6.20)

A feedback control loop with an infinite sampling rate and a pure computational latency is illustrated

in Figure 6.8. The open-loop transfer function for this model is then:

oo K™ Q9,4 — k|99
s(s+a)’ + e Hsra)
and the closed-loop transfer function is: )
G Ke™s% /(s(s + a))
L+G 14 K;eii({(s(s +a)) Figure 6.8 The Feedback Control Loop with

= - o (6.21) a Computational Delay
s+ as+ Ke %0

residual Once again, the denominator of Equation 6.21 is
the characteristic equation for the controlled sys-

tem.
\ 2 —stp
s“+as+ Ke (6.22)

\
i
original delay

L t=0

J\\ °t0:02 % When the delay period, to = 0, this character-
X istic equation is identical to the original (Equa-
tion 6.19). But for latencies greater than zero, the
exponential term modifies the roots of the charac-
teristic equation. A complete analysis of the effect

Lﬁ“\ Re(s) of the delay would require tools that we haven’t
/{ developed in these notes. However, we can ap-

* = 0.4

preciate the destabilizing effect of the delay by
noticing what happens to the roots of the char-

\T'/ acteristic equation. The original system (see Fig-
h d ure 6.6) was stable for a = 2 and K = 0.5, where
T its characteristic equation produced two negative,
real Toots. Figure 6.9 is a plot of the real part of
FEquation 6.22 as a function of s for various delay
times, tg.

Figure 6.9 The Characteristic Equation as
a Function of Computational Delay

This example illustrates that the most stable root is displaced in the positive direction as computa-
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tional latency increases. Since each real root will produce an exponential term in the time domain
(an earlier example illustrated this), the delay destabilizes the system at a fixed gain. Moreover, the
qualitative response of the system will also change as result, eventually producing an oscillation.
If the controller is scheduled on a distributed architecture for which computational latency is not

predictable, then it follows that the response of the system will not be predictable either.

The Effects of Sampling — Z-transform

D’Azzo and Houpis “Feedback Control System Analysis and Synthesis,” McGraw-Hill, Inc, 1966,
p. 687-695
a very concise demonstration of sampling and the z-transform analysis for the 1 DOF direct-drive

robot example.

6.6 Actuators

6.6.1 Permanent Magnet DC Motors

A particularly popular actuator for robot systems I ’ f /
is based on the Lorentz force produced when a qv// ) / -

current loop is placed in a magnetic field. Fig- 4 .

ure 6.10 illustrates the electromechanical config- NORTH / / / / SOUTH
uration of the DC motor. Electrical energy is AR N / 1

transformed into mechanical energy by pushing FT— / B

an electrical charge through the loop (or arma-
ture) in the presence of a directed magnetic field. /
The Lorentz force, gV x B, generates a torque on +V
the rotor proportional to the current (¢V') and the
magnetic field strength.

Figure 6.10 A schematic of a single loop in
the rotor.

The opposite is true, if a force is input to the system, such as is done in a wind turbine, for instance,
when mechanical energy causes the rotor to revolve and the resulting velocity through the magnetic
field causes electrons to accelerate (i.e., current). In fact, this property affects the DC motor as
well since this velocity induced current is in the opposite direction as the current moving in the
conductor. This effect can be modeled as a voltage that is proportional to the angular velocity of

the rotor — referred to as the back emf.
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induced
current

7 'y . .
— \ / Figure 6.11 shows an induced current perpen-
) B dicular to the axis of the conductor that is the
result of the rotor velocity. A simple applica-

Z
/
[
\

/v 4 tion of the right hand rule verifies that the
L a8 ,/ / current thus produced is opposite in direction
- 7 to the current that generated the motion in
+V the first place. This suggests that the ability

of a motor to generate torque will diminish as
the motor velocity increases.

Figure 6.11 Backwards electromotive force due
to rotational velocity.

This very simple model also suggests that we may expect the steady state torque produced in the
motor to be propotional to the amount of current we can push through the loop, and that its steady
state velocity will be proportional to the voltage. In practice, this motor runs out of torque as soon
as the current loop becomes perpendicular to the magnetic field. At this point, or slightly before,
a reversal of the current in the coil can continue to accelerate the rotor in the same direction.
This is referred to as commutation and can be accomplished in solid state switching circuits or

mechanically using brushes and conducting pads.

The electrodynamics of the DC motor are derived by approximating the motor as a lumped param-
eter system. The relationship between torque and current in the motor is a (very linear) function of
the number of windings, the magnetic field strength and the current supplied by the motor driver,

7 = K I, where 7 is the rotor torque, K; is the torque constant for the motor, and I is the current.

R

The back emf (or “generator” effect mentioned ear-
lier) is also, as it turns out, a linear function of the
rotor velocity, V;, = Kbé. The induced current flow in-
duces a backwards voltage potential, Vj, proportional
v to the angular velocity 6 through the constant, Kj.
Writing the sum of voltages around the circuit yields:

-
P

T )
V=IR+ Lfl—t + K0 (6.23)

Often, the inductance introduced by the motor wind-

Figure 6.12 FElectrical model of the DC ings is negligible and can be omitted.

motor.

Under these circumstances, the loop equation becomes:

V = IR+ K0 (6.24)
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By relating the the mechanical power out 76 to the electrical power input VI and resistive losses,
we can derive the relationship between K; and Kj.

mechanical electrical
power = power — losses
out mn
70 = VI - I’R
(K1) = (IR+Ky®)I — I’R
= K160
K; = K,

The dynamic equation of motion for the motor can be derived by summing all the torque applied

to the rotor and employing Equation 6.24:

Sr=J§ = KI

Vv Ko
= K|=_-=Z
Rearranging terms, we get:
. K?. KV
- = 2
O+ 550+ =5 =0 (6.25)

The rotational moment of inertia, J, includes the rotor inertia, the gearbox load, and the external

load. Which of these dominates the system’s dynamics is an interesting question.

Typical DC motor applications drive the load through a reduction or gearbox. This implies that
the motor dynamics must consider what a compound load such as that depicted in Figure 6.13

looks like to the motor when viewed through the gearbox.

T=KI ™M=NTL

Z*

Figure 6.13 The compound load of the motor-gearhead combination
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If we consider the transmission to be perfectly efficient and linear, then the motor applies the
torque produced by the Lorentz forces to accelerate the rotor and load inertias and to overcome
the viscous friction of the rotor and load as well. The load is driven through a gearbox reduction

n < 1. The “reduction” is in rotational velocity since

0, = nOw,
éL = néM, and
0, = niu

However, if the transmission is perfectly efficient, then the power input is equal to the power output,

or

ToutWout = TinWin
Tout (nwin) = TinWin
o Win
Tout = Tin
(nwin)
1
Tout = Tin 5 (6.26)

Therefore, the transmission amplifies the output torque; if the reduction n = 0.01, then the output
shaft carries one hundred times the torque at one hundredth the velocity of the input shaft. We
may write the dynamic equation of motion for this compound load by equating the torque derived
from Lorentz forces on the rotor with the torques consumed to accelerate the load and dissipated
in the viscous friction.

T = [JMHM + BMHM] +7 [JLéL + BLéL] (6.27)

Where the second term is the external load, 77, referred to the motor shaft, 7y, = 77, as is
shown in the diagram. By using the velocity relationship across the transmission (8, = nf,;), and

rearranging terms:
T = [JMéM + BMéM] +n? [JLéM +BL9M]
= [In 402 0) 6 + [Bus +0*Br] b
where:

Jerp = Ju+n°JL
B.; = Bu+n°Bg
For large reductions (7 small) the inertia of the compound load is dominated by the rotor. This is

very significant, since the rotor inertia is not dependent on the robot configuration, unlike the load

inertia.
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We may also wish to determine how much torque is required to backdrive the system: how much
torque is required on the load shaft to accelerate the compound load. This is precisely the same
analysis, except that we will reference torque and velocity to the load shaft rather than the motor
shaft.

Tin = [JLéL + BLéL] + 1 [JMHM + BMQM]
n

[JLéL + BLéL] + 7]1—2 [JMéL + BMéL]

1 . 1 _
= [JL + FJM] 0L + [BL + n—QBM] o

Therefore, from the perspective of the output shaft, a 100:1 reduction (n = 0.01) effective amplifies
the rotor inertia 10,000 times. This implies that actuators with large reductions are passively
stiff since the rotor behaves like a massive flywheel. In these situations, compliance to external

perturbations can only be accomplished through feedback compensators.

6.7 Homework Exercises

1. Linear Feedback Controllers for Roger
Roger-the-Crab’s dynamics were determined in Chapter ?? and in a previous programming
assignment, you coded a feedforward compensator which both linearized and de-coupled this
highly nonlinear dynamical system. Now we will begin to put Roger’s eyes and arms to
work. This programming assignment involves eye and arm kinematics, the implementation of
a feedback controller, and the empirical verification of the resulting second-order, closed-loop

response.

This project requires a brief report that should discuss the follwing sequence of tasks.

(a) Write a control procedure (a stub is provided) to implement the PD control portion of
the feedback controller shown schematically in Figure 6.14 for both the eyes and the

arms.

7 = Kp(6rer — Oact) — Kdéact
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(b) Visual Attention

Begin by designing a model-based PD controller for the eyes. Roger can see “objects”
in the world that you place by clicking the left mouse button (see the README). The
eyes have a focal length of 64 pixels and an image plane 128 pixels wide. So a vector
defining the heading to your “object” within the field of view can be found. Two such

headings can locate the (z,y) coordinate of the object.

Write a PD controller that foveates Roger’s eyes on any single object that you place in
the field of view by computing an angular error from the middle of the image plane.
Select gains (springs and dampers) that behave nicely. Once both eyes have foveated,
compute the resulting object (z,y) coordinate.

Visually Guided Reaching

Given the object’s (z,y) coordinate, decide which arm is appropriate for this goal.
Through the inverse kinematic relation for this arm, compute a reference joint angle
configuration and run that arm, via a PD controller to the perceived object. Again,
select gains for the arm that work well no matter where the goal is placed. If everything

works out, you should get a tactile response when the arm converges to the object.

Theoretical Verification

Using the compensated (linearized) PD control, you may now elicit under- over- and
critically-damped responses for the arm system by varying the gains, K, and Ky, as
described in the text. Every degree of freedom in the arm should match the theory for

a linearized and de-coupled system.

Integrated Reach to a Visual Target
On a single error vs time plot, show the transient response of the 6 DOF system from the
time you place an object until you observe a tactile response. Error is just 6,5 — 04 for

every degree of freedom in the system. Report the gains which produce these responses.



