Chapter 5

Stability

We will look at Lyapunov’s methods for expressing the stability of dynamical systems in the time
domain. A prototypical dynamic system, the spring-mass-damper will be introduced to provide an
example of this form of analysis. We will then examine tools for control synthesis in the frequency
domain. The 1 Degree-of-Freedom (DOF) direct-drive robot manipulator is used to illustrate
control synthesis, specifically the issues surrounding the composition of a discrete time controller

and a continuous plant.

5.1 Lyapunov’s Direct Method

Simply stated, Lyapunov’s perspective is captured in the following two observations which comprise
his “Direct Method.”

Definition 5.1 The origin of the state space is stable if there exists a region, S(r), such that states
which start within S(r) remain within S(r).

Definition 5.2 Systems which satisfy Definition 5.1 are asymptotically stable if as t — oo, the

systems state approaches the origin of the state space.

Definition 5.1 establishes a criterion for stability which requires that the state of the system never
leaves a region of bounded size. This definition prohibits the system from diverging toward infinity.
Stated another way, this condition requires that the total energy in the system remains bounded.

Definition 5.2 is a stronger condition. An asymptotically stable system’s state will approach the
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origin of the state space over time. This is equivalent to requiring that the system energy must
decay over time to zero at an equilibrium state. It is not strictly necessary that the region of the
state space in which the system operates contain the origin since a change of variables (translation
of the origin) can always be defined which causes this region to envelop the origin. Likewise, it is
not strictly required for the equilibrium state to have zero energy, only that it be the local minimum

in the region of the state space under consideration.

5.2 Lyapunov’s Second Method

The definition employs the Lyapunov function which is defined as an arbitrary scalar field written
in terms of the state variables, V (&, ¢), that is continuous in all first derivatives. Notice that energy

is an acceptable Lyapunov function by this definition.

Definition 5.3 Lyapunov’s Second Method Iff the function, V(Z,t), exists such that:

V(0,t) = 0, and
V(Z,t) > 0, forxz #0 (positive definite), and
ovjot < 0 (negative definite),

then, the state space described by V is asymptotically stable in the neighborhood of the origin. If
a system is stable, then there is a proper Lyapunov function. If however, a particular Lyapunov

function does not satisfy these criteria, it is not necessarily true that this system is unstable.

In order to understand the utility of these observations we will introduce the most commonly
analyzed dynamical system, the spring-mass-damper, and determine whether or not it constitutes

a stable system.
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5.3 The Spring-Mass-Damper System

Figure 5.1 illustrates a dynamical system consist-

ing of a mass, M, a spring, K, and a damper, B.

This is an idealization of the mechanism used in

the suspension of your automobile or the mecha-

T nism used to close your screendoor without slam-
X

ming. The equation of motion is derived by cat-
— aloging the forces that are produced by each of
the three components of this system. The mass
expresses the relationship between the force and
acceleration acting on it,

Fo,=Ma=Mzi.

The damper relates force to the velocity of defor-

Figure 5.1 mation,

Spring-Mass-Damper System Fy = —-Bv = - Bz,

and the spring relates force to deformation,
Fk =—-Kz.

To derive the equation of motion, all we must do is enumerate all of the force acting on mass, M.
If the mass depicted in Figure 5.1 is accelerated in the +& direction, it will accumulate a velocity
and a displacement in the +& direction as well. This hypothetical displacement will elongate the
spring and damper in the system model. If we treat the mass as a free body and identify all the

force impressed upon it, we end up with the system illustrated in Figure 5.2.

The net force on the mass is responsible for the upward accel-

TM)? eration in Figure 5.2 and since this is a free body, this force
must be exactly equal to the sum of the forces generated by
l X the spring and the damper.
ZF:M:E:—B:&—K:E
KX l lBX If we rearrange terms, this equality defines the homogeneous

(or unforced) equation of motion.
Figure 5.2 Free
Body Diagram of the Spring-
Mass-Damper

Mz + Bz + Kz =0, or
&+ (B/M)e+ (K/M)z=0 (5.1)

This second order differential can be written in another way:

Z + 2(wnz + wlz =0, where : (5.2)
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¢ = B/2(KM)'?, damping coefficient, and
w, = (K/M)Y? the natural (resonant) frequency.

Lyapunov’s result suggests a means of analyzing the system’s stability without explicitly solving
the equation of motion. The energy, E, of this can be expressed as the sum of a kinetic energy and
a potential energy:

E = %M:&z + %K:c2 (5.3)
The first term is kinetic energy (the integral of momentum over a change of velocity), while the sec-
ond term represents the potential energy stored in the elastic deformation of the spring (computed
as the integral of a force over a displacement). Note that we have expressed energy in Equation 5.3
in terms of the state variables (z,2). Moreover, this expression describes an ellipse in the state
space whose area is defined by the value of E (see Figure 5.3). If we differentiate Equation 5.3 with

respect to time,

dE
and insert the expression for & derived from Equation 5.1, we find:
dE
il Mi(—(B/M)z — (K/M)z) + Kz&

— —Bg? (5.4)

The rate of change in the energy of this system is negative definite since both B and #? are positive
real numbers.
To evaluate this result from the perspective of Lyapunov’s

Definitions 5.1 and 5.2, consider Figure 5.3. Since the deriva-
tive of energy with respect to time is negative definite, if we

Xe

release this system at time 0 with energy 1.0, for instance,

we may guarantee that it will never leave the envelope cor-
responding to an energy of 1.0. Moreover, if B = 0 then the
system’s state would orbit along the £ = 1.0 ellipsoid contin-
uously trading strain energy in the spring for kinetic energy.
If however B > 0, then the system’s state space trajectory
would spiral spiral toward the origin and come to rest with

zero energy — satisfying Lyapunov’s criteria for asymptotic
stability expressed in Definition 5.2. Therefore, the linear

spring-mass-damper system is asymptotically stable over the

entire state space. Figure 5.3 The State Space
This is not necessarily the case for all spring-mass-damper Trajectory of the Spring-Mass-
systems. Damper System

Consider non-linear viscoelastic components defined by:
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F, = a(l -=2%z, (5.6)

this damper is a function of the  component of the state space, B(z) = a(l — z?), a > 0.
Immediately, note that if « > 1 the system exhibits a negative B! Therefore, the damper will

effectively inject energy into the system — violating both Lyapunov criteria for stability.
Formally, the equation of motion for this system becomes

Mi+ Kz® + o1 - 2%)2 =0, (5.7)
and the energy of the system is expressed as

E = /Mv'dv'—I—/ Fidz', or
0 0

= / Maz'dz' + / Kz'3dz'
0 0
so that for this system we find:
1 1
E = §M:i:2 + ZK:C‘1 (5.8)

c-;siable-

=
Logabie s

When we differentiate the energy with respect to time, we
obtain:

dE
= = Mii + K2z f )
= Mi[-(K/M)z® - (o/M)(1 — 2°)2] + Kz /
= —Kz’i - o(l -2z’ + Kz°2
dE
asymptotically
Figure 5.4 illustrates the stability regimes that emerge for stable

this system as a function of position in the state space.

Figure 5.4 A State Space
Trajectory of the Nonlinear
Spring-Mass-Damper System



