Chapter 4

Dynamical Systems

Definition 4.1 (Dynamics) the branch of physics that treats the action of force on bodies in

motion or at rest; kinetics, kinematics, and statics, collectively. — Websters dictionary

On the basis of Chapter ??, we are now in a position to analyze the affect of mass and force
on kinematically complex bodies. The basis of this analysis is the work of Sir Isaac Newton
whose principles of particle motion establish the relationship between force and acceleration. A
generalization of these ideas in the form of Newton-Euler equations permits the construction of the

dynamic equations of motion for articulated structures.

4.1 Newton’s Laws

Consider a body idealized as a point mass moving in R3. This particle undergoes pure translational

motion. According to Newton’s laws:
1. the particle will remain in a state of constant rectilinear motion unless acted on by an external
force;

2. the time-rate-of-change in the momentum (mwv) of the particle is proportional to the externally

applied forces, F = 4 (mv);

3. and any force imposed on body A by body B is reciprocated by an equal and opposite reaction
force on body B by body A.
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In systems for which mass is constant, the second law provides the basis for one of the most
significant equations in physics, F' = ma, often referred to as Newton’s equation. At first glance,
the first law appears to be a restatement of the second law. However, the first law asserts an
important prerequisite to the application of the second law. It states that a particle that experiences
no external forces will move in a constant velocity along a straight line. If an observer of such a
particle undergoes an acceleration and/or a rotation, then it the particle will appear to trace a
curved path. The first law, therefore, establishes a property of the inertial or absolute coordinate

frame. This property must be established in order for the second law to be applicable.

Newton’s third law requires that when two particle interact, each experiences reciprocal forces
equal in magnitude and opposite in direction. This property will be important when we consider

articulated mechanical structures that transmit forces from one link to the next.

4.2 Euler’s Equation

Consider rigid bodies that consist of a distribution of mass in space. Under translation, these bodies
behave precisely the same as a particle of the same total mass located at the bodies center of mass.
However, under rotation, the distribution of mass about the center of rotation is important. In this
situation, Newton’s equation is insufficient. To correctly describe the relationship between force
and acceleration in rotating bodies, we must develop the notion of angular momentum. Figure 4.1

illustrates a particle of mass m moving with uniform rectilinear velocity v.

The area of any triangle defined by two suc-
cessive positions of the particle and vertex O
is a constant,
A= %vm_ = %’I"’UJ_.

It is clear that the quantity, rv; (or mrv ) is
conserved under this state of motion. In fact,
it can also be shown to be conserved when
the particle is under the influence of a central
force directed toward O.The quantity, mrv,
is reminiscent of linear momentum because it
contains mw, but it is different. Momentum
is in [kg — m/sec], whereas mrv, is in [kg —
m? /sec).

Figure 4.1 Conservation of Angular Momen-
tum.

This quantity is the angular momentum of the particle, and must be defined with respect to a
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particular point (O in this case).

L=mrv,

Now, consider a planar lamina consisting of a planar col-
lection of point masses related through rigid body con-
straints as shown in Figure 4.2. The total angular mo-
mentum of this system is the linear sum of the angular
momenta of the constituent point masses.

Ligtat =Y _ L =D _ myrgvL
k k

Since, = ré, we Imay express v j = 0k SO that,
Figure 4.2 A Collection of Point

y . .
Liotal = Z myre 0y, Masses in a Planar Lamina.
k

For rigid bodies, 91 = 92 =...= ék, SO
Liotal = (Z mkr,%> 6 = M6. (4.1)
k

The quantity M = ), mkr,% in units of [kg — m?] is the rotational moment of inertia. Tt is
independent of the state of motion — an intrinsic property of the body, and is dependent on the
distribution of mass about point O. For systems with fixed mass, we define the torque applied to

the system to be the time rate of change in angular momentum.

d ) ;

r=2 [M6] = M (4.2)

Equation 4.2 (Euler’s equation) is the equivalent of Newton’s equation, F = mZ for the rotating
lamina. It states that the body remains in a constant state of rotation unless acted upon by a

torque, which causes a corresponding angular acceleration.

4.3 Rotational Moment of Inertia

When we extend the analysis of the lamina into three dimensions, the body is now free to rotate
about any axis in R3. Once a center of rotation is identified, the moment of inertia of the body is
dependent on the distribution of mass about that point. The effective moment of inertia varies as
the axis of rotation varies. The inertia tensor permits us to write an expression for the moment of

inertia about arbitrary axes'.

!Mathematically, a tensor is used to describe the directional anisotropy in a property, in this case, the ability to
transform torques into angular accelerations.
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Figure 4.3 illustrates a 3D object that is rotating about the origin of frame A.

The differential volume element, dv, shown in the figure
is assume to have a uniform mass density, p, so that the
differential mass dm = pdv. This continuous mass dis-
tribution requires that we write the rotational moment
of inertia, M = 3", myr2, as an integral over the object

volume.
MASS MOMENTS MASS PRODUCTS
OF INERTTA OF INERTTA
Moy = [ [ [(y* + 2°) pdv Mzy = [ [ [ zypdv
Figure 4.3 A differential volume ro- Myy = [ [ [(&® + 2%)pdv My, = [ [ [ zzpdv
tating about the origin of frame A.
M, = fff(ac2 +y%)pdv My, = [ [ [ yzpdv

EXAMPLE: The rectangular block illustrated in Figure 4.4 rotates about the origin of frame
A. All the mass of the rectangle is in the positive octant of the coordinate system. For this case,

we may write:

h pl pw 9 9
M,, — /0 /0 /O (v + 22)pddydz A,
hopl o V
= / /(y + z%)wpdydz h
0o Jo
o3 ! A
= /0 (§+22y)] wpdz =
0
h I3 b
= ['(G +#2updz U
Bz 123
= (= + % | [§(wp) :
3 3 Figure 4.4 A rectangular mass and a
Bh 1IR3 center of rotation A.
-\t

The other elements of the inertia tensor can be computed in a similar fashion. Since the mass of
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the rectangular body is m = (lwh)p, we find that:

(1% + h?) 2wl 2hw
AM = Twl  D(w? + h?) 2l
2 hw hi 2%+ w?)

4.3.1 The Parallel Axis Theorem

The inertia tensor describes the moment of inertia about an arbitrary axis passing through the
origin of frame A in Figure 4.4. However, if we wish to move the center of rotation, and therefore

change the effective distribution of mass, we do not have to recompute the tensor from scratch.

In fact, the inertia tensor is tabulated in handbooks for
commonly occuring shapes with respect to the body cen-
ter of mass. The quantity is easily modified to reflect ar-
bitrary rotation centers by noting that the body behaves
like a lumped, point mass concentrated at the body’s cen-
ter of mass. Using the nomenclature of Figure 4.5, the
moments of inertia can be written

AMzz = MM, + m( Al%‘M + Ay%’M)’ A Y
X
and the products of inertia are,
Asz _ CMsz +m( Agonm AyCM)- Figure 4.5 An eccentric mass distri-

bution.

EXAMPLE: Suppose that the center of rotation for the rectangle is now moved to the object’s

center of mass. In this situation, the parallel axis theorem suggests that

A

w
/ /[( : CMMzz = AMzz - m( A-’E%‘M + Ay%’M)

o h _ M9 9y Moo 9

| J - — m(l2 + ’11)2)

o 12
X

and
I
CMM.’L‘y — AMJ,‘y - m( A-TCM AyCM)
Figure 4.6 Mowving the center of ro- = T(wl) — T(wl) =

4 4

tation to the center of mass.
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The result of moving the center of rotation to the center of mass is the diagonalized inertia tensor

(12 + h2) 0 0
OMpp = % 0 (W?+h%) 0
0 0 (1? +w?)

4.4 Rotating Coordinate Systems

If we assume that coordinate frame B in Figure 4.7 is moving with a constant angular velocity
w with respect to an inertial frame A, then the velocity of particle @ in inertial coordinates (7 4)
consists of its translational velocity in frame B (75) plus a term due to the angular velocity of frame
B (w x rg). This second term is due directly to the angular velocity of frame B — an observer
attached to frame B cannot correctly account for the forces on particle @) by observing its apparent
motion.

From another perspective, we may consider coordi-

nate frames A and B to be related by way of a time
varying rotation matrix

A=A RB(t)rB.
The velocity of Q with respect to frame A is then:

ia = LR

= ARpfp+ sRp 7B
z, = aRp[fp+ (wp X 1B)]

In the final expression for 74, we have expressed the
Figure 4.7 Velocity in an inertial frame  absolute angular velocity of frame B in frame B co-
due to a time varying rotation matriz. ordinates for notational convenience.

Again we find that the velocity of particle @ relative to the inertial frame consists of the translational
velocity of () within the B coordinate system plus a term inherited from frame B’s state of motion.

This result holds for any vector quantity that is expressed in a local coordinate system which is

itself rotating with respect to an inertial frame of reference.

%[ARB(t)(')B] =4 Rp %(')B + (wB x (-)B)
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4.5 Newton-Euler Equations of Motion

Figure 4.8 depicts a single link (link ¢) of an articulated structure and identifies the parameters
necessary to completely describe its instantaneous state of motion. The local coordinate frame for
link 7 is attached to its proximal end, with it’s Z axis aligned with a revolute degree of freedom.

The dynamic parameters are referred to the center of mass of the link.

The net force and the time rate of change
in velocity are related through Newton’s
equation:

d .

F = 7 (mv) = mo (4.3)
which states that the force acting on this
free body is equivalent to the time rate of
change in the body’s linear momentum. In
rotating coordinate frames, however, we
must also account for the velocity due to
the angular velocity of frame 7. In partic-
ular, if frame ¢ in Figure 4.8 has angular
velocity R;w; with respect to the inertial

Figure 4.8 Free body diagram of link 1.

frame, then
d .
F o= o (Rimvi) = Rimib; + Rymgv;
= R; [m,vz + (w,- X m,vz)] (4.4)

is Newton’s law for body i, where F' is the net force acting upon link ¢ written in inertial coordinates,
R, is the rotation matrix relating frame 7 to the inertial frame, and w; is the absolute angular velocity

of link 7 written in link 7 coordinates.

Fuler’s law is the analog of Newton’s equation, relating angular acceleration to torque through the

rotational moment of inertia.

d
N = %(RZM’L‘UZ)

= R; [Mzwz + (wi X Mzwz)] (45)

is Euler’s equation for body ¢, where IV is the net torque acting upon link ¢ written in inertial

coordinates, and R; is the rotation matrix relating frame ¢ to the inertial frame.

Equations 4.4 and 4.5 can be combined to yield the equations of motion of the link. If F' and N

are written in the local coordinate frame for link 7, then

KRR AR 0o
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where W € RS is the generalized force or wrench consisting of forces and torques acting on link i

written in link 7 coordinates.

4.5.1 Propagating Velocities in Open Kinematic Chains

If we define the complete state of motion in a mechanism, that is all positions, velocities, and
accelerations, then we can compute the forces in the structure resulting from this state of motion.
The Newton-Euler equations are the basis for a recursion in which (w,w,?); can be computed for
i = 0,n using the state of motion in the immediately proximal link, (w,w,?);—1. This recursion
begins at the inertial frame where (wy = 0,wy = 0,9 = —g). The inertial frame is given an
acceleration equal and opposite to gravity. This is mathematically equivalent to operating the
robot in a uniform gravitational field but allows us to avoid accounting for individual gravity loads

on each link.

In the following derivations, we will assume that the absolute state of motion, (w,w,?);, is known

at frame 7 and our goal is to write expressions for these quantities at frame (i + 1).

Angular Velocity: w

REVOLUTE : i+1w,~+1 = 1Ry iwi + éi+12i+1

PRISMATIC : "Mlwi 1= ;11R; ‘w;
Angular Acceleration: w
REVOLUTE : @i = iRy '+ (—ip12i1 % i+1R; “w;) + 0i412i1

= 1R 'wi + (1R "wi X 0i412i41) + Oip12i

PRISMATIC : o = ;1R “wy

Linear Acceleration: v Consider the motion of particle () moving with respect to a coordinate

frame, 1, which is in turn moving with respect to an inertial frame, 0, as depicted in Figure 4.9.
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Here %w; and %v; are the angular the transla-

tional velocity respectively, of frame 1 expressed
in frame 0 coordinates.

Given 115’Q, the position vector for point () in
frame 1 coordinates, then

%0 = oR1 'pg + %

where 0% is just the position vector of frame 1
written in frame 0 coordinates. For general veloc-
ities in RS, the velocity of particle () expressed in
frame 0 can be written:

0 1 0 ) 0 Figure 4.9 Propagating velocity and acceler-
g = oR1 Po+ (Tw1x oR1 Po)+ "0 ation into a non-inertial coordinate frame.

The linear acceleration of particle @ is then,

. d . . - d N R
050 = pr [ R, 1pQ] + (%1 x Ry ) + ( Pwy x 7 [ORI 1PQ]) + %
= oRy g+ (%wi x oR1 'pg) + (w1 x oR1 'Pg) + (Cwi x oR1 'pg)

+( Owl X 0(4)1 X oR1 lﬁQ) + 0’1.71
By associating the i"® coordinate frame in a kinematic chain with frame 1 in Figure 4.9 (and
therefore frames 0 and 2 become frames (i — 1) and (¢ + 1), respectively) and collecting terms, we
may write
HFir = iR [ i1 Ry D 20w xRy ) + (TR X im1 Ry i)
(" rwi x Tlwg xRy i) + i_lﬁi]

= iR [ i 4 2(twi X Pinr) + (i X Pign) + (Pwi X Twy X i) + Zﬁl}'z‘(]‘”)

Equation 4.7 can be simplified somewhat given the type (prismatic or revolute) of the i+ 1%¢ degree
of freedom.
REVOLUTE : ‘fi;11 = const, 'Piq = "Pioq =0
i = iR [ Wi 4 (@i X "Pig1) + (Cwi X wy X iﬁi+1)]

PRISMATIC :  'pi1 = di, i = d,':i:f, By = di
g1 = i1 R [ Wi+ did; + 2( fwi X diEi) + (@i X diFi) + (Twi X fw; X dz‘fﬂi)]

Having established (w,w,®) for link 4, we must now refer the accelerations to the link’s center of
mass, where we can describe both the accelerations (w,?) and consequently, the net forces and

moments (F, N) that are consistent with these accelerations.
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i+1

; i+1 - i+1,~ i+1 +1 i+1,~ i+1,,
Vem,(i41) = ( i X T Pem) + (Mwign X Twign x T pem) + o (4.8)
+1 1,

Fa = mig oem i (4.9)
i+1 i1 - i+1 i+1

"INy = Miy o+ (Twipn X Mg Twig) (4.10)

4.5.2 Propagating Force in Open Kinematic Chains

Section 4.5.1 establishes that velocities are inherited from link to link starting from an inertial
frame and culminating in the velocity at the end of the kinematic chain. The same is true of forces
in the mechanism. If our mechanism is moving in freespace, then the distal unitary link, link n, in
the chain sees only those forces accounted for in its state of motion and applied to its proximal end
by link n — 1.

As we move along the kinematic chain, distal to prox-
imal, each successive link inherits a component of force
applied to its distal end. Just as velocity propagates from
inertial frame (where velocities are zero) outward, forces
propagate from the free end of the manipulator (where
forces are zero) inward. Figure 4.10 shows link 4 in a
kinematic chain. We define *f; and ’n; as the force and
torque respectively, exerted on link ¢ by link ¢ — 1. Fur-
thermore, the superscript designates that these quantities
are written in frame 4 coordinates. If we assume that the
structure is in static equilibrium, then

_ i dpe  p.itlg
ZFOTC% - .FZ - 'f“ iftit1 _ fir, or Figure 4.10 The propagation of
‘fi= "Fi+ iRiy1 " fix1 (411)  forces in a kinematic chain.

ZTorques = 'N; = 'n; — z.77i+1 —( "Pem X Z.fi) —(( Z.PH—I - Z.Pcm) x Z.fi+1a
but, ‘f; = ‘F; + ;R;y1 "T'fi11, by Equation 4.11 so that,
'Ni = 'mi— i1 — ("pem X "Fy) = ("pem X fix1) = ("piv1 X *fix1) + ("pem X ' fir1)
= "ni— g1 — ("pem ¥ “Fp) — ("'piy1 X fiy1)
or,

i = "Ny + iRit1 “'0ig1 + ("pem X "Fi) 4+ ("piy1 X iRiy1 " fin1) (4.12)
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To summarize, the Newton-Euler equations are solved iteratively starting from the inertial frame
(0 = w = 0) and proceeding from proximal to distal. This procedure propagates velocities and
accelerations from link to link and solves for the net force ( *F;) and moment ( *N;) on the center of
mass of each link in the kinematic chain. Having finished this outward iteration, we begin an inward
iteration starting from the free (distal) end of the manipulator, where t!f;,; = Flp, | = 0.
Equations 4.11 and 4.12 are applied to resolve the force and torque on the proximal end of link 3.
The forces and moments at frame ¢ result in mechanical strains in a link or a joint, or they produce
translational or rotational accelerations in the system. In the case of revolute joint ¢ with axis of

rotation about the Z; axis, the component of the torque about the Z; axis
= "mi % (4.13)

produces an angular acceleration of the joint, whereas other components of the torque at frame ¢

are resisted in the mechanism and propagated into other portions of the structure.

The component relationships of the outward-inward iteration for a robot composed of revolute

joints exclusively are summarized in Tables 4.1 and 4.2.

Table 4.1: Outward Iteration Equations

Angular Velocity: w Equation 4.5.1
REVOLUTE:  “wiy; = iiRi ‘wi+0i12i1
PRISMATIC:  *lw;y; = ;1R “w;

Angular Acceleration: w Equation 4.5.1
REVOLUTE: ;1R ‘wi + (1R ‘wi X 0iy12i11) + 051241
PRISMATIC: &1 = 1Ry

Linear Acceleration: v Equation 4.5.1
REVOLUTE: 141 = i1 Ry | W+ (P x i) + (Pwi X fwi x i)
PRISMATIC: ¢4 = ;11 R, [ i 4 dids 4 2( fw; % did) + (s x dids)

+ (w; x 'wy; X diy)]

Linear Acceleration (center of mass): v, Equation 4.8
i+1,; i+1,: i+1,> i+1 i+1 i+1,>
o) = (i X T Pem) + (Flwi X Flwin X T Pn)
+ o
Net Force: F L =mip1 T m i1 Equation 4.9

Net Moment: N AN = My i + (T lwi x Mgy P lwig) Equation 4.10
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Table 4.2: Inward Iteration Equations

Inter-Link Forces: ifi = 'Fy+ iRip1 i Equation 4.11

Inter-Link Moments: in; = ZNZ + iRt i+17?i+1 + ( "pen X 'Fy)
+ ("pi1 X iRiy1 "t fiz1) Equation 4.12

4.6 Lagrangian Mechanics — Equations of Motion

The Lagrangian L is defined to be the difference between the kinetic energy T and the potential

energy V of a dynamical system.

This simple expression, together with results from the calculus of variations, yields an elegant
means for constructing the dynamic equations of motion. To compute Langrange’s equations, we

will make use the following.

Theorem: (Lagrange’s Equations) The equations of motion for a mechanical syste with gen-

eralized coordinates ¢ € R™ and Lagrangian, L are given by:
grang g

where T; is the vector of external forces acting on the i*# generalized coordinate, g;.

In vector coordinates,

The proof of Equation 4.6 involves the Calculus of Variations and is beyond the scope of this text.

The dynamic equations of motion are obtained from:

_ 4oL oL
2_dtacji 8(]1'
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where the ¢; are the configuration variables, ¢; are the corresponding velocities, and F; are the
related forces or torques.

To gain some physical intuition into the Lagrange’s equation, suppose that kinetic energy terms
look like %m(j? and that potential energies are considered of the form mgq. Then, inserting these

kinds of energy terms into the Lagrangian, we find:

i[a_L] _ 9Ly
dt |10g]  0Oq
dro (1 P
L2122 - Y T
dt[84<2”"1>] 5g M99+
d )
g (md) = mg+7T

Or in words, the net external force on the system (right-hand side) is equivalent to the time rate
of change in the momentum (left-hand side) of the system. This is just Newton’s equation, so we
may be assured that Newtonian mechanics and Lagrangian mechanics produce the same kind of

results.

4.7 Structure of the Dynamic Equations

In general, the equations of motion for an n degree of freedom open chain mechanisms can be

written in the following form:

T=M(q)j+V(g,9) + G(g),
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where M (q) is the n X n (symmetric and positive definite?) configuration dependent inertia matrix

that relates acceleration and torque, V(q,q) is the n x 1
vector of velocity dependent torques (centrifugal and
Coriolis terms), and G is a n X 1 matrix containing all
gravitational forces. Equation 4.7 is refered to as the
state-space form since it is organized by the state vari-
ables (g, q).

If we consider the planar, 2R robot shown in Figure 4.11,
then

T=M(©)0+V(0,0)+G(O)

where, © = (01,602), M is a 2 X 2 inertia matrix, V is a
2 x 1 vector or torques representing the velocity terms,
and and G is a 2 x 1 vector of gravitational torques. The
Newton-Euler equations produce exactly the same equa-
tions of motion as the Langrangian formulation for this
system. The results for either analysis yield:

l%mz + l1lomoce

M(©) = [

V(@, 9) = l

2msa + 2l1lamacy + 12(m1 + my)

mglllzsﬁ%

Figure 4.11 The Two
Freedom, Planar Robot.

l%mQ + l1lomocy
12mg ’

—mQleQSQé% — 2’”’@1112529192 ]

G(©) = l malagerz + (m1 +ma)liger ] _

malagcio

Degree

of

To compute the configuration of a system described by Equation 4.7, we will re-write it in the form:

6 =M"1(0)[r-V(©,0)-G(©) - F|

where F' is a catch-all term for representing any miscellaneous external force (contact loads, friction,

etc). Now, the state of motion together with command torques is used to compute the resulting

acceleration in the robot mechanism. Real robots are physical devices that perform this compu-

tation in analog, but Equation 4.7 can be used to simulate the mechanism. Given suitable initial

state variables, the state of the system can be predicted for all future time. For example, using a

simple Euler integrator, we find:

o) = M*l[T—V—G—F]

O(t+ At) = O(t) +6(t)At

O(t+ At) = O(t)+OAt+ = G)( t)At?

%and is therefore always invertible
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This is in fact, how dynamic simulations work, although better integrators are usually employed.

A final observation is warranted before we move on concerning the use of our dynamic model in

the control of the system. Consider the compensated system illustrated in Figure 4.12.

6 ——| M [—(Ss )——— rROBOT | g 6 — M=l |4

A

A

Figure 4.12 Compensating to Linearize and Decouple Complex, Nonlinear Plants.

The incorporation of the feedforward compensator produces a dynamical system that approximates
the identity plant. This means that every mass in the system behaves as if it is a simple unit inertia,
and that its pattern of motion is independent of the motion in other systems masses. If we have
succeeded, that is, if the model on which the compensator is based is a good accounting of the real
system, then from the perspective of control, we are left with the system shown on the right side of
Figure 4.12. We will see in subsequent chapters, that we may exploit this result when we compute

0(t) trajectories for the system.
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4.8 Homework Exercises

1. The inertia matrix of an airplane with respect to the zyz coordinate system at its mass center

as shown in the following figure.

z

100, 000 0 20,000
I= 0 150, 000 0
y 20,000 0 250,000

X

Locate the principal moments of inertia Note that the x axis is longitudinal and the y axis is

lateral.

2. Derive the dynamic equation of motion for the 1 DOF system illustrated.

Write the dynamic equation of motion in the state
space form for this system, using:

(a) Newton/Euler equations (outward/inward
iterations).

(b) Lagrangian formulation.

3. Derive the dynamic equation of motion for the cylindrical robot described in problem 3.6

using the Lagrangian formulation.

4. This problem concerns the Roger-the-Crab mechanism® and simulator that we will use a

various points throughout the course.

3This creature was originally described in:

Churchland, P.M., Matter and Consciousness: A Contemporary Introduction to the Philosophy of Mind,
Bradford/MIT Press, Cambridge, MA, 1988.
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e02 'e_I.Z
‘(‘ 12

[1=12=0.25m
I eo ele ere d=0.12m
y
2d

Roger lives in a “flat-land” world where gravitational forces act in the negative y direction.
Roger’s eyes and arm are dynamic systems and this homework problem involves modeling the
inertial parameters of Roger’s world. This is analogous to “uncrating” a robot and identifying
the influence of gravity and inertia on the motion of the system before you actually do anything
with it.

Problem 2 concerned the dynamic equation of motion for the 1 DOF eye mechanism. The

dynamics of the arm are a bit more complicated:
T=M(©)0 +V(0,0) + G(0)
where, © = (01,62), M is a 2 x 2 (symmetric and positive definite*) inertia matrix,

M(O) = 2mg + 2l1lamacy + 13(my + ma)  Emg + l1lamacy
o l%mg + l1lamacy l%mg ’

V is a 2x 1 vector incorporating all terms which depend on velocity in the system (centrifugal

and Coriolis forces),

V(@,@) _ [ —m211128293 — 2migll959601 6 ] ’

m211l2829.%

and G is a 2 X 1 matrix containing all gravitational forces,

G(©) = malagciz + (m1 + ma)lige
malagcero ’

4The symmetric and positive definite properties provide that the M matrix is always invertible
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(a) System Identification
Design an experimental procedure for identifying the parameters of the dynamic equation
of motion of the eyes and the arm. Describe the experimental procedure in detail and

the results you obtain.

(b) Copy the simulator in /courses/cs600/cs603/cs603/zroger to your directory. This code
consists of a README file that describes the simulation briefly, and control files control.c
and control.h. For this (and subsequent) homework problems using Roger, you will have
to add code to the control.c file - no other file should be changed.

With the dynamics determined in problem 2 and given above, it is possible to build the

so-called feed-forward compensator depicted here.

o> en}

ROBOT

.

—
[

Implement these feedforward compensators for both the arm and the eyes in the sim-
ulator. Demonstrate that the result is linearized and decoupled analytically, and show

evidense that the feed-forward compensator accomplishes this in the simulator.



