Chapter 3

Kinematics

Definition 3.1 (Kinematics) a branch of dynamics that deals with aspects of motion apart from

considerations of force and mass — Websters dictionary

The Greek word for motion is kinema. Ampére used the term cinématique to refer to a body of

“...in which movements are considered in themselves ...” We will examine movements in

science
solid bodies all about us, especially in the assemblages called machines [10]. A fundamental as-
pect of every robot control application is the characterization of spatial relationships. This section
will introduce the subject by discussing free bodies in R3. Following this, we will discuss how
robot structures constrain motion and how forces and velocities are propagated along articulated
mechanisms. During this discussion, we will develop the governing forward kinematic relationships
for kinematic chains consisting of revolute and prismatic joints. We will introduce inverse kine-
matic analysis (a much harder problem, in general), and describe how Cartesian reference postures
can be used to define joint positions for some simple robots. Methods for exploiting redundant
degrees of freedom will be introduced allowing more motor flexibility at the expense of control
overhead. We will conclude this chapter with a discussion of off-line inverse kinematic models and

the pseudoinverse as a means of addressing multiple objectives in an articulated structure.

3.1 Terminology

The individual rigid bodies that collectively form a robot device are referred to as links. Links
are connected in pairs through kinematic constraints called joints. A prismatic joint permits
translations between links, implemented as a slider moving along a guide link. Typically the guide

link is linear so that the slider executes a straight line motion. A revolute joint connects two
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links through a rotational bearing. If the rotation is about a fixed axis, then the two links execute
motions within the plane defined by the links. An assemblage of interconnected links is called a
kinematic chain. A mechanism is formed when one of the links is held fixed and the others may
move relative to the fixed link. The fixed link is referred to as the ground link or frame. Most
mechanisms in the machine design literature consist of closed chains, that is, kinematic chains
with every link connected through joints to two adjacent links. Most robotic devices are open
chains wherein a link may only be connected to one joint (unitary link). Any parameter (length
or angle) of an underconstrained mechanism is called a configuration variable. Devices for which
multiple configuration variables must be specified are described in a configuration space. The
minimum number of position variables necessary to fully define the configuration of a mechanism
is called the degree of freedom (DOF) of the system.

3.2 Spatial Relationships

A free body moving in R® may translate in R® and may execute rotations R € SO(3). To fully
characterize the instantaneous position of this (rigid) body, it is necessary to specify 6 position
variables with respect to some reference frame. A translation is naturally a vector in R2, but
there are several alternatives for representing rotations: exponential coordinates [8], Euler angles,
and quaternions. In this chapter, we will consider homogeneous representations, in particular, the
homogeneous transform. This representation treats translations and rotations in a uniform manner,

and it is easy to compose and invert.

3.2.1 Translations

Frames A and B in Figure 3.1 are related through
a pure translation. A position vector expressed in
frame B can be expressed in the A coordinate frame
through the linear transformation

TAa=7B+1ta

Figure 3.1 Two Coordinate Frames re-  where £, 4 represents the pure translation from frame
lated through a Pure Translation. A to frame B written in frame A coordinates.
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3.2.2 Rotations

Frames A and B in Figure 3.2 are related through a pure
rotation. A position vector expressed in frame B can be ex-
pressed in the A coordinate frame by employing the 3 x 3
transformation matrix 4Rp,

74 = aRp 7B
rTA tA-iB tA-iB iA-kB rIp
TYa = jA -ip iA -iB jA : ifB TYB
TZA ka-ip ka-jp ka-kp rZB Figure 3.2 Two

Coordinate Frames related through
where 4,7,k represent the basis vectors for a coordinate  a Pure Rotation.
frame.
This projection of frame B onto frame A clearly converts a position vector, g, written in frame B,

into the corresponding coordinates in frame A, 74.

Another way to interpret the rotation matrix for this transformation follows from noticing that the
rows of 4Rp represent the projection of the basis vectors for frame A onto the basis vectors of
frame B. Conversely, the columns of 4R p represent the basis vectors of frame B projected onto the
basis vectors of frame A — the rotation matrix is just the direction cosine matrix. This suggests

that the inverse of this matrix is just its transpose.

One way to specify the rotation matrix 4Rp is to write the basis vectors (%,j,fc) g in frame A
coordinates and to enter the result into the columns of 4Rpg. If i‘g is a column vector representing

the Z axis of frame B written in frame A coordinates, then

cos(f) —sin(f) 0
ARp=| 24 95 23 | =] sin@) cos(d) 0 (3.1)
0 0 1

Notice that the rotation illustrated in Figure 3.2 is a positive sense rotation about the Z axis. This
explains why the direction of the Z axis is preserved by this transformation — the only coordinate
directions that are modified are the  and ¢ directions. Notice also that Equation 3.1 encodes the

transformation from frame A to frame B — sRp = rotation(z,0).
For completeness, we will list the rotation matrix for rotations about all three axes:
1 0 0

rot(z,0) = 0 cos(0) —sin(0) (3.2)
0 sin(0) cos(9)
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cos(0)
0
—sin(0)

[ cos(6)

sin(0)
0

0 sin(6)
1 0

0 cos(9) |

—sin(@) 0
cos(f) 0
0 1
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(3.3)

(3.4)

3.2.3 The Homogeneous Transformation

Figure 3.3 Two Coordinate Frames related through a Rotation and a Translation.

Now consider the general case where frame 0 and frame 2 are related to one another through both
rotation and translation as shown in Figure 3.3. The homogeneous transform is a mechanism for
expressing this form of compound transformation. Define transformation, (T3, to be the compound
transformation consisting of a translation from 0 to 1, followed by a rotation from 1 to 2. In vector

notation, this homogeneous transformation and corresponding homogeneous position vectors are

written:
Ty
- T
o = Y
Tz
1 2
Now,

7o = oTar

= Roih+1p
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EXAMPLE: The homogeneous trans-
form provides a convenient means of
constructing compound transformations.
Figure 3.4 represents the relationship be-
tween frames 0 and 4 in terms of three
intermediate coordinate frames.

0T4= oT1 1T2 2T3 3T,

where:
oT1 = translation(Zo,1.0)
1Ty = translation(gi,1.0)
9oT3 = translation(2z,1.0)
3Ty = rotation(gs, —m/4)

Figure 3.4 A compound transformation.

The resulting compound transformation in this example is:

0.707 0 —0.707 1
o] 0 1 0 1
0= | 0,707 0 0.707 1

0o 0 0 1

It is always a good exercise to check the result, so let’s select a couple of position vectors expressed

in frame B and check.

CASE 1: let 74 = (0,0,0,1) This position vector locates the origin of frame 4. The corresponding

position vector in frame 0 is:

0.707 0 —0.707 1 0 1
. 0 1 0 1 0| |1
0= 1 0707 0 0707 1 ol |1

0 0 0 1 1 1

CASE 2: let 74 = (1,0,0,1) This position vector locates the endpoint of the # axis for frame 4.
The corresponding position vector in frame 0 is:

0707 0 —0.707 1] [ 1 1.707
o o1 0 1ol | 1
"= Vo707 0 o077 1||lo| | 1707

o 0o o 1|1 1
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Inverting the Homogeneous Transform The inverse of the homogeneous transform is simple

to derive, we will simply show you the result. It is a useful exercise to verify that it is correct.

- A SA T
I3 Yg 2 t
ATp = B YB *B

0 0 0 1

3.3 Forward Kinematics

In a typical robotics application several
frames of reference may be required to fully
specify the state of the robot and the task.
Figure 3.5 illustrates several such meaningful
coordinate frames for a robotic task. Every
application must have an inertial reference
frame. In Figure 3.5, the world frame serves
this purpose — all motions and forces are ex-
pressed with respect to this reference. The
base frame for the robot is expressed with re-
spect to the inertial coordinate system. This
frame may be a fixed transformation from the
world frame, or it may be controlled as in the
case of a mobile platform. For manipulators,
there is typically a wrist frame specified at
the end of the manipulator which specifies the
endpoint of the controllable degrees of free-
dom with respect to the base frame. The tool
frame may be used to locate an important fea-
ture of a grasped object which is relevant to a
task defined goal frame located at some po-
sition on an object specified by the object
frame. Finally, the geometry of the workpiece
may be specified relative to a station frame.

GRr ()
_ 0 —t-75)
T — T 1 — (yB) ( - yB
oPa=latu GAT (~Ta)
0 0 0 1
N
N~ ( Wrist
Tool
B Goal
— ase o
|
Station
World

Figure 3.5 Standard Coordinate Frames Com-
mon to Robotics Applications

Nearly every robotics application begins with a process of kinematic identification — the relative

positions and orientations of agents and/or objects in the workspace must be determined. This

relationship may be determined a priori as, for example, when the station frame is located with

respect to the robot’s base frame provided that this relationship is static, or it may be determined

on-line as, for example, when the goal is located with respect to the station frame. Moreover, these

relationships can be identified in one of the Cartesian frames or in the joint angles (or configuration

space) of the robot. A special case of this kinematic identification, commonly called forward
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kinematics, involves locating the position and orientation of the wrist frame of the manipulator
in Cartesian space as a function of the controllable degrees of freedom. This transformation maps

a vector of joint angles, é: into a position and orientation of the manipulator endpoint.

Consider the simple 2 DOF, planar manipulator illustrated in Figure 3.6. The position of the
endpoint of this manipulator can be determined by inspection. The position of frame 2 with
respect to frame 0 is just (l1cos(61),l1sin(61). The position of frame 3 with respect to frame 2
written in frame 0 coordinates is likewise (lacos(61 + 62),l2sin(61 + 62)), so that the position of

frame 3 with respect to frame 0 can be written:

x = licos(6h) + lacos(01 + 62)
y = lisin(6r) + losin(6r + 02)

The orientation of the endpoint frame can likewise be
determined easily. It is just a counterclockwise rotation of
the Z( and gy axes by an amount (61 +63). The direction
of the Z axis is preserved.

This forward kinematic problem can be significantly
harder in more general manipulators. In these situations,
the homogeneous transform provides a basis for comput-
ing the position and orientation of the endpoint. The net
transform from the base of the robot to the frame at-
tached to its endpoint can be expressed as a sequence of  Figure 3.6 The Two Degree of Free-

simple transformations. dom, Planar Robot.
oT4 = Ty 1Ty T3 3Ty
= rot(2y,61) trans(iy,l1) rot(2e,62) trans(is,ls)
cC1 —81 00 1 00 ll Co —S89 0 0 1 0 0 lg
_ ss ¢ 0 0 01 0 O s9 ¢ 00 010 O
0 0 1 0 00 0 O 0 0 1 0 0 0 0 O
0 0 01 0 0 01 0 0 01 0 0 0 1

3.4 Manipulator Workspace

Due to finite link lengths and joint angle ranges, the configuration space of a robot corresponds
to a proper subset of Cartesian space through the forward kinematic transformation. This subset
is known as the reachable workspace. Returning to the 2 DOF planar manipulator example,

we may define the reachable workspace by enumerating all positions in Cartesian space that are
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realizable endpoint positions for some manipulator configuration. It is clear that every configuration
executed in the course of a task must remain within the reachable workspace. Figure 3.7 illustrates

the reachable workspace for our 2D planar manipulator as a function of relative link length.

Figure 3.7 The Reachable Workspace for the Two Degree of Freedom, Planar Robot.

Simply reaching a reference position is not always good enough. Often geometric task constraints
require that the end effector can achieve particular orientations. It would simplify the process of
planning a manipulator trajectory significantly if the subset of Cartesian space in which arbitrary
orientations could be achieved could be enumerated — this space is sometimes referred to as the
dextrous workspace. If the trajectory executed in the context of a task remains entirely within
the reachable workspace and the goal configuration remains within the dextrous workspace, then a
motion planner can be assured that a solution exists. If, on the other hand, either of these conditions
is not satisfied, it is possible that subtasks may be required to satisfy all task constraints during
execution. Returning to the example in Figure 3.7, we completely characterize the workspace by
noting that positions on the outermost boundary of the workspace are indeed reachable, but only
when 6 = 0. This implies that there is a single joint angle configuration for each of the Cartesian
locations on the outside perimeter of the workspace. This is true regardless of the relative link
lengths. In these singular configurations, the manipulator can reach the endpoint position, but can
only do so with a single endpoint orientation. The workspace region between the inside and outside
perimeter is reachable with exactly two alternative configurations. In the case when Iy = ls, the
origin is reachable in an infinite number of configurations and can therefore generate all endpoint
orientations in the plane. Therefore, a single point in Cartesian space constitutes the dextrous

workspace, and this point exists only when [l; = [5.

In general, precomputing the dextrous workspace is very difficult. However, the analysis can be

facilitated by clever mechanical design. It is always possible to construct a dextrous workspace over
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the entire reachable workspace by attaching a spherical wrist to the manipulator endpoint. The
spherical wrist allows all endpoint orientations at every reachable position by introducing three
orthogonal revolute joints whose axes intersect at a point. This construction is valid only if the
center of the spherical joint coincides with the manipulator endpoint. If this is not true, then the
dextrous workspace will contract relative to the reachable workspace by an amount proportional to
the geometric offset between the endpoint and the center of the spherical wrist. It is interesting to
note that the human wrist embodies this design principle with humoral rotation, flexion/extension,
and adduction/abduction, corresponding to roll, pitch, and yaw axes respectively, intersecting near

the base of the palm.

3.5 Inverse Kinematics

The homogeneous transform provides a tool for computing the forward kinematic transformation
for any manipulator. However, the task often implies a Cartesian entity which must be mapped into
a joint angle configuration for the robot. This is the so-called inverse kinematic transformation.
The mapping from Cartesian space to joint angle configuration, X - @, is more complicated than
the forward kinematic relationship. Certain regions of the Cartesian space are unreachable and

others can be achieved by multiple robot configurations.

The inverse kinematic problem has been addressed in a variety of ways: Pieper (ca. 1968) for-
mulated a general inverse kinematic solution to 6 DOF manipulators consisting of 3 revolute or
prismatic joints followed by three consecutive joints with rotational axes that intersect at a point,
Paul (ca. 1981) demonstrated a technique based on homogeneous transforms for the same class
of manipulators treated by Pieper, it is a simple matter to formulate an iterative approach to
the inverse kinematic problem, but not without considerable computational expense, and off-line

techniques are very common in practical implementations.

For the sake of this discussion, we will consider only geometric techniques of generating complete in-
verse kinematic solutions. We will analyze a very simple 2 DOF planar manipulator to demonstrate

the complexity of the problem.

3.5.1 Geometric Inverse Kinematic Solutions

The inverse kinematic solution for the two degree of freedom, planar manipulator illustrated in

Figure 3.6 is considerably more involved than the forward kinematic solution.
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The algorithm for computing inverse kinematic solutions must first check for the existence of a

solution by verifying that the Cartesian target is inside the reachable workspace.

Figure 3.8 defines the geometric constructions used to
solve the inverse kinematics. First, to eliminate #; and
solve for two unique 6 solutions, we note that r? = 2412
and from the forward kinematics, x = lic; + lac12 and
y = U151 + l2s12. In the following, we will often employ
the trigonometric identities: s12 = s1¢c2 + ¢152 and c12 =

C1Co — 81892.
rP=2?+9y* = B4 2lscicia + 133, (3.5)
—i—l%s% + 2111981819 + I%S%Q (36)
= 42y + 12 (3.7)

Figure 3.8 Auzxiliary Variables for
Computing Joint Angle Configura-
rr=13-1 tions.

2= T

We may now rearrange terms to solve for ca,

This ratio captures geometric aspects of the manipulator and the task and permits us to check to
see if the target is reachable. It is clear that —1 < ¢y < +1. If this is not true for a given r, [;, and

l2, then the target is not reachable.

All target locations that prove to be reachable generate two (possibly repeated) manipulator con-
figurations. The only exception to this rule will be when /; = [ and r = 0. This manipulator
geometry possesses an infinite number of configurations for the target position. To solve for both

0, solutions,

s24+ck =1 (3.8)
2 = 1—¢c (3.9)
s;/T = 4/ —(1-&)Y? (3.10)
(3.11)
so that,
07 = tan"122 (3.12)

C2

In order to solve for corresponding configurations for 1, we note that
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where k1 and ko are defined in Figure 3.8

ki=rca, = I+l (313)
k;/_ =TrSq = 123;/_ (3.14)
Therefore,
z =kicy +kosyt = (recosy)cy + (rsing)si (3.15)
= rcos(a+ 6y) (3.16)
y=kis1 +kact = (rcosq)si + (rsing)ci (3.17)
= rsin(a+6) (3.18)
and
_ rsin(fa+601)  y
tan(ar+61) = rcos(a+60;) =
so that,
HIL/_ =tan 'Y — ot/
T

Figure 3.9 summarizes the algorithm for computing the complete inverse kinematic solution of the

2R, planar manipulator.

GIVEN (x,y) endpoint position goal:

r? =22 + 42
¢ = (r* — 1§ —13)/(2l2)
if (-1 < ¢y <+1)
s/ =4/ - (-G

9;/_ = tan~! 8{:_

ki =11+ laco

ki = sy

at/~ = tanil%
Hf'/_ =tan"1¥ — ot/

else “out of reach”

Figure 3.9 The IK algorithm for the 2R, planar manip-
ulator
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3.6 The Manipulator Jacobian

The planar, two degree of freedom manipulator treated in Section 3.3 (see Figure 3.6) yielded

expressions that defined the endpoint position, (z,y), as a function of the joint angle configuration,

(61,02),

x = licos(br) + lacos(01 + 602)
y = lisin(01) + lasin(fy + 09).

This forward kinematic relationship is clearly nonlinear, since the mapping cannot be expressed in
the form X = AO. This is precisely the reason that the inverse kinematic transformation is difficult
to compute — it is not a simple linear inverse relationship. However, in the vicinity of the current

state, the first derivative of the forward kinematic relationship defines a locally linear relationship
dX = Jd@.

This transformation is a linear (and invertible) approximation of the mapping from joint space
velocities, dé, to Cartesian space endpoint velocities, dX. However, the relationship is valid only

for the instantaneous configuration of the manipulator.

The Jacobian of the planar manipulator is:

oxr = —lls’in(el)ael — lQS’i’fL(Ol + 92)891 — lgsin(Gl + 92)892 (3.19)
Oy = l1cos(01)001 + lacos(01 + 02)001 + lacos(01 + 02)002 (3.20)

which can be written:
83: —1131 - 12312 —12812 601
= . 3.21
[ dy ] l lici +lacia  lacio ] [ 00 ] (3:21)

With the manipulator Jacobian, we may compute the Cartesian endpoint velocity that will result
from a given joint space velocity. However, most often we are interested in computing the joint
space velocities that will generate a desired Cartesian endpoint velocity, 6 = J~'X. This is
indeed possible for the planar manipulator since its Jacobian is 2 X 2, but the inverse relation
is ill-conditioned in the neighborhood of singularities. Singularities occur whenever the Jacobian
looses rank, i.e., whenever the determinate of the Jacobian is zero. Geometrically, this happens
when: (1) the endpoint position lies on the axis of a joint — velocities in this joint will not generate
any endpoint velocity, and (2) when the endpoint lies within the plane defined by two joint axes
— velocities in either of these joints generate collinear endpoint velocities. In these situations, a

desired endpoint velocity can require infinite joint angle velocities.
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EXAMPLE: If we compute the determinate of the Jacobian for the planar, 2D manipulator
defined in Equation 3.21

—lis1 —las12 —l2sio

2 2

I I I = —lilgsic12 — 1551212 + l1lac1 812 + 15c12512
161 + l2c12 2C12
= lhLla(cis12 — s1¢12)

= 111282.

It follows that the Jacobian is singular when sin(f2) = 0, or when 63 = 0, 7. These configurations
of the manipulator generate the boundary of the workspace: 0y = 0 generates the outside- and
02 = 7 the inner-radius of the reachable workspace (Figure 3.7). In these singular configurations,
the endpoint of the manipulator can not move instantaneously in two dimensions — it is constrained
to move in a one dimensional subspace. If requested endpoint velocities are not in these subspaces,
then infinite joint space velocities can result.

Suppose that this manipulator is to execute an endpoint

velocity, V' = 1.2 in the % direction as illustrated in

Figure 3.10. Since the Jacobian for the 2D, planar ma-
nipulator (Equation 3.21) is 2 x 2, it is a simple matter

to invert: J~! = #(J)[cofactors of J|T, yielding the

mapping © = J 'X. The result is:

g1 1 lacra l2s12
lilasy | —lict —laci2 —l1s1 —l2s12
so that,
01 i 1 lacio 12819 1
02 hilgsy | —her —laciz —lis1 —lasia 0 Figure 3.10 The 2D, planar manip-
l%é rad ulator and a specific endpoint velocity
= —a ~ar | gon command.
laso l152

Once again, note that when sy — 0, 5 — oo — this is the singularity in the Jacobian. Therefore,
when 0, = 0,7, the inverse Jacobian is singular. In practice, velocity controllers based on inverse
Jacobians will have difficulty tracking Cartesian trajectories in the neighborhood of kinematic
singularities. Cartesian path planners must either compute paths that avoid kinematic singularities,

or they must be robust with respect to deviations from the path.
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3.6.1 Principle Kinematic Transformations

“...posture variation is a means through which motion and strength characteristics of

the arm is made compatible with the task [1].”

The Jacobian transforms the unit sphere in joint velocity space:

16> =62+62+...+6% <1

to an ellipsoid in Cartesian space, since £ = J 9, and

00 = 6|* = (J7'a)"(JE) = & (T T e = 2T (JTT)

We find that (JJ?)~! behaves like a configuration dependent amplifier from joint velocities to

Cartesian endpoint velocities.

In the force domain,

7 = (FU)ITS) = 1T

so that the force amplifier is (JJT). The eigenvectors of (JJT) and (JJT)~! are identical. More-
over, the eigenvalues of (JJT) (force amplifier) are reciprocals of eigenvalues of (JJT)~! (velocity

amplifier).

The principle axes of the conditioning ellipsoid, € are characterized by the eigenvectors (&;) of

(JJT). The singular values of .J are the square roots of the eigenvalues of (JJT), o; = |/e;.



3.6. THE MANIPULATOR JACOBIAN

Moreover, the singular vectors of J' are the same
as the eigenvectors of (JJ). An introduction to
the singular value decomposition is presented in Ap-
pendix ?77. The eigenvectors of (JJ') represent the
directions in Cartesian space of the principle trans-
formations from joint torques to endpoint forces. The
square root of the corresponding eigenvalue indicates
the relative degree of amplitude or precision in force
transformation.

The velocity ellipsoid is characterized by the princi-
pal axes, (1/,/€;)é;. A small JJ7 eigenvalue amplifies
comparatively small 6 into large 2. Large eigenvalues
imply a direction in space along which comparatively
large joint velocities correspond to small endpoint ve-
locities. These configurations, although unfavorable
from the perspective of velocity amplitude, can lead
to precision velocity control since joint velocity sen-
sors have higher effective resolution in these direc-
tions.

37

777777777

Figure 3.11 A Velocity Ellipsoid derived
from (JJT) for the 2D Manipulator Jaco-
bian.

The Jacobian can thus be thought of as a configuration dependent amplifier from joint space to

Cartesian space — effectively trading amplitude for precision in the velocity domain. Several scalar

metrics have been proposed in the literature to characterize this transformation.

3.6.2 Singularity Avoidance by Back Projection

A Cartesian velocity can be linearly decomposed into components along basis vectors defined by

the singular vectors of J. The singular values represent a configuration dependent ability to trans-

form joint angle velocities into Cartesian velocities.

Subspaces in which this transformation is

ill-conditioned correspond to the space spanned by singular vectors with singular values less than

some threshold. Small singular values suggest that velocities in these directions require relatively
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large joint angle velocities to track Cartesian velocity commands. However, if errors in the resulting
Cartesian trajectory can be tolerated, then Cartesian velocities that project onto ill-conditioned
subspaces can be ignored and a modified Cartesian velocity reference can be executed. The result
is a command Cartesian velocity that remains within relatively well-conditioned subspaces of the
manipulator Jacobian. A scheme like this requires that the errors in the resulting velocity com-
mands do not accumulate. If a deviation in the planned trajectory occurs, then subsequent velocity
commands must compensate. Note also that a mechanism such as this one for avoiding singularities

will never be able to converge to a singular configuration.

3.6.3 Scalar Kinematic Conditioning Metrics

Since the Jacobian captures the map from configuration space to Cartesian space in a locally
linear transformation, it is amenable to to a large variety of tools from linear systems theory to
characterize the local quality of the transformation. Scalar conditioning metrics have been used
as a design tool for relating manipulator geometry to a task domain [11], and as scalar objective
fields for optimizing the inverse kinematic solution [1, 2, 5, 6, 7, 9, 12, 13]. In this section, we will
introduce commonly used scalar metrics and illustrate how these metrics can be used to address
kinematic conditioning as a control task. In Section 3.7.1, we will introduce a method for addressing

kinematic conditioning in the context of redundant manipulators.

Minimum Singular Value The minimum singular value of the manipulator Jacobian indicates
how close the system is to a kinematic singularity where the Jacobian will loose rank. As the
manipulator approaches a singularity, the minimum singular value decreases until it reaches zero

at the singular configuration.

Condition Number If 6 is an approximate solution to J@ = &, then we may write di: = & — J@
so that § — @ = J~'di. Therefore,

16— 611 = 1|7 da|| < [|J7]] |lda]].
Since & = J6, [|&(| < ||J]| 1|6]], and ||6]| > |||/|| 7], so that

10—061 _ NI llda ]
1| — VAT

< (I

||dz]]
12|
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and

la)| _
191

||dz]|
1]

K(J) s(J) = 1711117

The condition number, 1 < k(J) < oo, describes the error amplification capacity of the Jacobian
J. When k = 1, the manipulator configuration is spatially isotropic, small errors in 6 correspond

to small errors in . As kK — oo, the manipulator is approaching a kinematic singularity.

The condition number of matrix J can also be defined as the ratio of the maximum to the minimum
singular value of J. The condition number of the manipulator Jacobian, therefore, describes the
eccentricity of the conditioning ellipsoid. The inverse of the condition number is perhaps more
relevant,
L _ ominl) (3.22)
K Omaz (J )
which varies continuously between zero (singular configurations) and unity (isotropic configura-

tions).

Determinant of the Manipulator Jacobian The square root of the determinant of JJT (or
the product of the singular values of J) is an approximation of the volume of the conditioning
ellipsoid. The volume of the ellipsoid can be appreciable even though the configuration may be
approaching a singularity, but in general, volume increases as the conditioning ellipsoid becomes

more spherical — spatially isotropic. The manipulability metric
p = VdetJJT

is a common choice as a scalar conditioning metric.

Figure 3.1 depicts the scalar manipulability function for the three distal finger joints of the Utah/MIT
dextrous hand [4]. The relative link lengths are illustrated in Figure 3.12. The manipulability field
was computed in the plane of the last three joints and joint range limits were ignored. The finger
is redundant since there are more joints (61,62,63) than dimensions in the plane (z,y) (we will
expand on the notion of redundancy in Section 3.7). The function illustrated shows only the most
manipulable configuration of the finger at each position in the workspace. The model so obtained
is an off-line inverse kinematic model since for any position in the plane for the fingertip, the model
returns the optimally manipulable finger configuration. These kind of inverse kinematic models are

very efficient at run-time, and therefore very common in practice.

In addition to providing an inexpensive inverse kinematic map, these metric spaces can be used to

advantage as kinematic controllers. In the context of a dextrous hand that is interacting with a
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Figure 3.1: Maximum manipulability model for the Utah/MIT finger.

workpiece, it is often useful to optimize the kinematic isotropy of the finger by executing displace-
ments in the arm. Such an approach preserves the ability of the finger to execute fine motions

and/or delicate contact forces.

For a single finger, the postural Jacobian is derived:

dM M R 0X
dgarm \Qiﬂ: fFarm %ﬂ
gradient field arm Jacobian

where T is a Cartesian displacement of the finger in it’s local coordinate frame, X is a Cartesian
displacement of the arm in it’s local coordinate system, and ;Rgrm is just the rotation matrix
from arm coordinates to finger coordinates. A controller can now be devised that adjusts the arm
configuration to optimize the finger posture by ascending the gradient expressed by the postural

Jacobian and holding the finger fixed in space.

Figure 3.12 illustrates the reachable workspace for the Utah/MIT finger and shows the trajectories

of steepest ascent in the postural Jacobian toward the optimal finger configuration.
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3.7 Redundant Manipulators

A manipulator is redundant if it possesses more controllable degrees of freedom than are required to
regulate the n < 6 dimensional Cartesian state of the endpoint. Redundant manipulators can have
an infinite number of inverse kinematic solutions for a given reference position and may execute an
infinite variety of 6 in order to generate a given . Under these circumstances, the inverse kinematic
problem is ill-posed, leading to the a so-called null space in the manipulator Jacobian. Motions in
the null space produce no endpoint velocity as they move across the self-motion manifold for the

given endpoint position?.

0.075+

(X, y)

0.025¢+ ’_\//

| \91

77777

-0.05 -0.025 0. 025 0.05 0.075 0.1

Figure 3.13 Configurations on the same
Self-Motion for a SR manipulator.

Figure 3.12 Relative fingertip trajectories resulting
from the manipulability-based postural Jacobian.

z = ljcos(bh) + lacos(6r + 02) + l3cos(01 + 62 + 03)
y = lhsin(6h) + lasin(01 + 62) + l3sin(61 + 02 + 63)

!The availability of multiple inverse kinematic solutions is not equivalent to the notion of dextrous workspace
presented earlier. Although multiple solutions exist in non-redundant manipulators, they are distinct points in
configuration space, while redundant systems may move continuously along the self-motion manifold.
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therefore, the self-motion manifold is defined by:

6,

i 0 -
1= =714 6,

{ v } { 0 } 0,

01
—l1s1 —las1o — I3s123 —l2s12 —l3s123 —I35123 by
lici +lacia +1l3c123  lacia +13c123 l3c123

For this case, internal motions along the self-motion manifold are constrained to be in the null

space of the manipulator Jacobian:

. lglgsin(eg)
Onutt = —12133’in(93) — lllgs’in(eg + 93)
lllgsin(ez) + l1l33in(92 + 03)

self motion manifold (x=-1, y=1.414) o

If we follow this null space vector through a sequence
of configurations, we can generate the self-motion
manifold. A motion along the self-motion manifold
is called an internal motion. The resulting flexibil-
ity can be exploited in many ways. The configuration
space trajectory can be chosen to avoid kinematic sin-
gularities, to address force and velocity constraints
imposed by the task, or to optimize the configuration
with respect to a cost function during the execution
of a Cartesian task.

Figure 3.14 A trace along the Self-
Motion for a 3R manipulator.

3.7.1 The Pseudoinverse

Counsider the case when the Jacobian is not square,

Tnx1 = Jnxmbmx1

Given the desired end-effector path in Cartesian space, we would like to find a corresponding path

in configuration space. To do so, we define the residual g’ = dz — J@ from which a quadratic error

. AT /. I
pe (5 ai) (5 9).

is computed,
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The Hessian of F is positive semidefinite for any given J, so J defines a unique minimum. Error is

minimized with respect to 6 when

E .
o8 _
o0
JT@Z—-Jo) = 0
J'z = Jvjg
g = [JTJ] JTz
= J#z
where:
-1
JE = [JT3) T JT (m<n)

= JT[JJT]_1 (m >n).

J# is the pseudoinverse or Moore-Penrose generalized inverse of J. In the first case (m < n),
there are fewer independent degrees of freedom in the manipulator than are necessary to execute
general Cartesian velocities in the output space. The inverse transformation is overconstrained
(more equations than unknown joint velocities) and exact solutions may not exist. In this case, J#
produces the joint velocity vector that minimizes the squared error between the solution and the

reference Cartesian trajectory.

In the second case, the vector 6 = J#i defines the minimum length solution, that is the lo norm
of the resulting g solution is the minimum over all candidate solutions. Since singularities lead to
large joint angle velocities, the pseudoinverse exploits manipulator redundancy when possible to

avoid kinematic singularity.

But choosing the minimum length joint angle velocity is only one option for selecting from among
the alternatives in a redundant manipulator. It is also possible to further exploit redundancy
to address scalar performance indices. In doing so, we establish a prioritized behavior for the

manipulator. The controller is expressed as:
0=J%;+(I—-J"))k (3.23)
where k is an internal or null space motion that does not disturb the minimum length solution,

6=1J #i, and optimizes a performance metric:

K= op
08
The first priority task in the control expressed by Equation 3.23 is the Cartesian velocity command.

(3.24)

If the redundant manipulator has excess degrees of freedom, then the posture is adjusted to optimize

the secondary performance metric, p.
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3.7.2 The SR-inverse

Nakamura et.al. [9] proposed the SR-inverse as an alternative to the more traditional pseudoinverse.
The observation that the pseudoinverse solves for the min, |0]| among all § that satisfy miny ||z—J 9
guarantees the Cartesian precision (exactness) of the solution, but may still produce infeasible
solutions since the joint space velocity may still get quite large in the vicinity of a singularity. If
we are willing to compromise the precision of the inverse kinematic solution, then we may also
consider the feasibility of the solution. Suppose that the objective function consists of a weighted
combination of precision (& — J6) and the feasibility of the solution (§). Under these circumstances,

the objective function becomes:
E =w (& — JO)T (& — JO) + wo(0)(6) (3.25)

where w1 and w9 are weights representing the relative emphasis on the “exactness” and “feasibility”

of the solution, respectively. The result is:
J =TT+ kDT = JT(JJT + kD! (3.26)

where k& now represents the relative magnitudes of w; and wy (k = 0 yields the pseudoinverse). It
has been reported that this approach can improve performance in the neighborhood of singularities,

but as mentioned earlier, introduces some error when tracking a Cartesian trajectory.

3.8 Homework Exercises

1. Inverting the Homogeneous Transform

Given the general expression for the homogeneous transform and its inverse:

[ |

| z’ |

z 0] z | P 1 gt |

ATg = | BTa = ATy = zr |
N |

0 0 0 [ 1],., - - — - |

0 0 0 |

Prove that pT4 is the inverse of 4Tg, that is, that pTa4 aTp = Isxa (= BTB ).

2. Forward Kinematics
A 2 DOF planar robot is illustrated in Figure 3.15.

[
h<THa~]
N QL 8I

4x4
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Figure 3.15 The 2 DOF planar robot

(a) Derive the forward kinematics of the the manipulator, § — #. Write the homogeneous

transform (T3.
(b) Write the Jacobian for the 2 DOF manipulator.

i. Compute the joint angle velocities required to execute an instantaneous velocity of

1 m/s in the x-direction from any initial joint angle configuration, i.e

ii. Compute an expression for the torques on the joints of the manipulator necessary

to apply 1 N endpoint force in the —4 direction from any reachable initial posture.

(c) Compute the eigenvalues and eigenvectors for JJT (the squared velocity transformation).

Draw the velocity ellipsoid at 6; = 7/4, 02 = 7/2, assuming [} = ls = 1.

3. The Figure illustrates three coordinate frames: W (world), A and B.
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Yy
A aTb
7 X
wTb
wTa
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000 1 000 1

(a) Use the given transforms for w74 and w7Tp to calculate the transform from A to B,
aTlR.

(b) The position vector which locates point P with respect to coordinate frame B is given

by 75 =[ —1, 1.5, 0, 1]. Solve for the position vector which locates point P with

respect to frame A, 74.

4. Using the transforms given:

(a) solve for Ty,

(b) compute the position of the hand’s fingertip in the camera’s coordinate frame.
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A CAMERA

X
> ---

WORLD wTft =

o O O Bk
o O +» O
O O O
R O = O

5. A simple 1 DOF manipulator is illustrated below.

(a) Compute the forward kinematics, i.e., the homogeneous transform which defines the end-
point position and orientation, for the manipulator. NOTE: use the defined coordinate

systems.

(b) What is the reachable workspace for the manipulator?
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(c) Write the Jacobian, Joz1, that maps A6 to (Az, Ay), ie.,
Az oz
=| ¢ ] A0 = Jox1 [A]
5]

6. A simple 2 DOF manipulator is illustrated below.

(a) determine the homogeneous transform which defines the endpoint position and orienta-
tion, for the manipulator. NOTE: use the defined coordinate systems.

(b) What is the reachable workspace for the manipulator?
(c) Write the Jacobian, AZ = J3,0Ad

7. Homogeneous transforms are not the most compact representation for describing spatial rela-
tionships, in fact, much of the information in a homogeneous transform is redundant. Given

the following homogeneous transform;

) D =D =D
|

O = O O

o O O

_ N = O

find the elements designated by the question marks.

8. Introduction to Roger-the-Crab
Roger-the-Crab started out as a purely kinematic device proposed by Churchland to study
the kinematics of hand-eye coordination. We have a dynamic simulation of Roger in the code
for the class and we will use the Roger simulator for several homework projects during the
semester. Roger has eyes that independently track a single feature in the field of view. This
simple visual system permits us to compute depth from vergence — triangulation given known
baseline between the eyes and eye orientation. Consequently, we may then use kinematic

models of Roger’s manipulator to “touch” the visual feature.

Figure 3.16 shows Roger’s kinematic structure.



3.8. HOMEWORK EXERCISES 49

o2 S,

11=12=0.25m

6. Orc d=0.12m

Figure 3.16 The Anatomy of Roger-the-Crab

Ultimately, we are interested in the mapping from eye orientations, ®, to a manipulator

configuration, ©.
Write the function that maps eye orientation to Cartesian position, ® — X, analytically.

Then, write the inverse kinematic relation, X +— ©.

9. Rhino Interface
The Rhino robot is a five degree-of-freedom educational manipulator with a servoed gripper.
The controller has an on-board microprocessor that handles all motor operations. Robot/host
communication uses the standard RS-232C interface and can be run from any computer that

is equipped with such an interface.

Four instructions provide a comprehensive operational capability:

start a motor and move it a certain number of steps.

stop a motor.

)
)
(c¢) query the status of the six microswitches.
) compute the motor position relative to its zero position.

Our Rhinos are hosted by Sun workstation running X Windows. Two sample programs are

provided in /usr/local/rhino:
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rhino.c: Interactive RS-232 communication between the Sun and the Rhino XR Mark III
Controller.
(a) To compile type: make rhino
(b) To run type: rhino

“ will exit the program.

Anything you type on the Sun will be sent to the Rhino. Typing
rhino_home.c: Skeleton (non-interactive) procedure to drive the Rhino.

(a) To compile type: make rhino_home

(b) To run type: rhino_home
This project involves building yourself an interface to the Rhino which allows you to:
(a) “home” the robot — move it to a landmark in joint space defined where all the mi-

croswitches are closed,

(b) keep track of the state of the robot by transforming the encoder values on the robot to

joint angles expressed in radians.

(c) define forward- and inverse-kinematic models so that you can map tasks from the world

frame to joint space and vise versa.
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